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Model of hydrodynamic perturbation growth in the start-up phase of laser implosion
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A simple analytical model is presented to study hydrodynamic perturbation growths driven by nonuniform
laser ablation in the start-up phase in laser fusion. Propagation of a rippled shock and deformation of an
ablation surface are studied for cases of initial target roughness and nonuniform laser irradiation. The study of
the perturbation growth in the start-up phase is very important because it seeds the Rayleigh-Taylor instability
in the subsequent acceleration and stagnation phases. Analytical solutions are obtained for temporal evolutions
of the shock front ripple and the ablation surface deformation. As a result, it is seen that the shock front ripples
oscillate and decay in both cases. On the other hand, there is an asymptotic amplitude of the ablation surface
deformation in the case of uniform laser irradiation on a target with a rippled surface, and an asymptotic
growth rate of the ablation surface ripple in the case of nonuniform laser irradiation on a smooth target. In both
cases, it can be shown that a high intensity of laser irradiation causes the ablation surface to distort, and a short
wavelength laser inhibits its deformation. Approximate formulas expressing the temporal behaviors of the
shock front and the ablation surface are obtained in the weak shock limit. Those formulas are also applicable
to a relatively strong shock. Analytical results agree quite well with recent experimental data for the shock
front ripple and the areal mass density perturbation in the initial target roughness case. The behaviors of the
shock front ripple and the ablation surface deformation are also investigated in the case where the nonunifor-
mity of the laser irradiation oscillates with time. It can be seen that the deformation of the ablation surface is
inhibited for a high oscillation frequency of the laser nonuniformi§1063-651X98)06009-7

PACS numbdss): 52.35.Tc, 52.35.Py, 52.50.Jm

I. INTRODUCTION Hydrodynamic perturbations generated at the rippled
shock front propagate through the shock compressed region,
To achieve ignition and high gain in inertial confinementand induce deformation of the ablation surface. On the other
fusion (ICF) [1,2], a spherical pellet must implode efficiently hand, perturbed ablation pressure drives hydrodynamic per-
and symmetrically. A laser implosion process can be dividedurbations in the shock compressed region, and affects the
into three phases: start-up, acceleration, and stagnatishock front ripple because the flow behind the shock is sub-
phases. A shock wave driven by laser ablation propagatesonic. The shock front ripple and the deformation of the
through a shell in the start-up phase, and shell acceleraticablation surface thus interact with each other through a
then follows. The ablation surface and the interface betweesound wave and an entropy wave in the shock compressed
a hot core and surrounding cold main fuel are Rayleightegion. It was shown in Ref9] that the temporal evolution
Taylor (RT) unstable[3] in the acceleration and stagnation of the rippled shock front and the deformation of the ablation
phases, respectively. Hydrodynamic perturbation growth irsurface are obtained by solving a linear wave equation in the
the start-up phase seeds the RT instability in the subsequesiock compressed region with suitable boundary conditions
acceleration and stagnation phases. The study of the hydrthat describe the ripple of the shock front and the deforma-
dynamic perturbation growth in the shock compressed phasion of the ablation surface. In this paper, a mathematical
is thus essential for a better understanding of the RT instaderivation of model equations is represented in detail, with
bility, that is important not only in ICF but also in supernova their analytical solutions for various cases.
explosiond4]. We consider a rippled shock driven by nonuniform laser
When ablation pressure is applied on a target with aablation that is induced by an initial surface roughness of a
rippled surface, a rippled shock wave is launched in accortarget or by nonuniform laser irradiation on a smooth target.
dance with the target surface. It is known that when a shocln the linear theory, the surface roughness and nonuniform
front is rippled, the phase of the ripple oscillates as the shockradiation are treated separately with different boundary
propagates. This is caused by lateral fluid motion behind theonditions. As a result, analytical solutions of the model
rippled shock front. Also, when a smooth target is nonuni-equation will be explicitly shown, and approximate formulas
formly irradiated by a laser beam, a rippled shock is drivenwill be obtained in the weak shock limit. We show a good
by perturbed ablation pressure. The oscillation of the ripplecagreement between those formulas and the exact solutions
shock generate hydrodynamic perturbations, and determingot only for a weak shock but also for a relatively strong
the initial conditions for the RT instability after shock brea- shock. Some of the solutions are compared with recent ex-
kout [5-8]. perimental result$5], and good agreements between them
are obtained as shown in Ré¢f].
It should be mentioned that since the model is based on
*Present address: National Institute for Fusion Science, 322-inear theory and the assumption of a stationary laser abla-
Oroshi-cho, Toki, Gitu 509-5292, Japan. Electronic addresstion as the zeroth order hydrodynamics, the theory may be
ishizaki@nifs.ac.jp difficult to apply directly to imprint experimen{d0-14. In
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those experiments, a significant imprint may be created by Ablation suface Shock front
nonuniform laser irradiation before the stationary laser abla-
tion takes place. Despite this fact, analytical solutions are
useful to understand the underlying physics and the depen-
dence on target and laser parameters.

Our model uses the variable transformation introduced by
Zaidel [15] to solve the linear wave equation in the shock
compressed region with boundary conditions such as the
Rankine-HugoniotRH) jump condition at the shock front
[15-18 and the Chapman-JouguétJ)) deflagration jump
condition at the laser ablation surfaf&9]. The RH jump
condition gives relations of physical variables across the
shock front, while the CJ deflagration jump condition relates FIG. 1. lllustration of rippled shock propagation driven by non-
physical variables at the ablation surface with those at thgniform laser ablation induced by the initial surface roughness of a
sonic point. It is thus assumed implicitly that a wavelength oftarget. Solid and _dashed lines show shock fronts at (_1ifferent times
target surface roughness or laser nonuniformity is very Iong?“d rays, respectivelyy, t,, ts, andt, correspond to times when
compared with the width of the ablation layer. This assumpiN€ amplitude of the shock front ripple become zero, maximum
tion may be suitable for the case of laser irradiation with a("€Versedt zero, and maximum, respectively; 1, <ty<ty).
weak intensity in which the width of the ablation layer is ) o ) o
short, because the width is proportional to the mean free paﬂ.,\mforr_nlty of the laser |rrad|a_t|0n oscillates with time. The
determined by electron temperature at the sonic ja@it If ~ Pehavior of the shock front ripple and the ablation surface
the wavelength of the perturbation is comparable to o@deformation is investigated in such acase. It can be seen that
shorter than the width, the thermal smoothing in the ablatiorthe _defprmauon of the ablation surface is inhibited for a high
layer should be taken into account. It should also be men@scillation frequency. . _
tioned that we choose “plausible” boundary conditions at N Sec. Il A, the zeroth order profile of a stationary shock
the sonic point because the flow expands supersonically in §ave driven by a steady laser ablation is examined. The
region beyond the sonic point, and neither sound nor entroprofile is determined by applying the RH jump condition at
waves in this region can cross the sonic point and affect thEhe shock front and the CJ deflagration jump condition at the
shock compressed region. ablation surface... In Sec. Il B, we 'descrlbe an analysis for

In spite of these assumptions, we can derive many Signiﬁpertur_bed guantities. The perturpathn analysis solves a wave
cant features of the problems from the simple model. Ini-equation for pressure perturbation in the shock compressed
tially, the amplitude of the shock surface ripple decays rapfegion. In Sec. II C, we explain the boundary conditions at
idly compared with that driven by a rippled rigid piston, the shpck front and at the ablation surface to solve thg wave
because of the mass ablation across the ablation surface. TRguation. In Sec. Ill, we analyze the temporal evolution of
amplitude of the ablation surface ripple approaches a finitéhe shock front ripple and the ablation surface deformation
value in the case of the target surface roughness. It should K Using the pressure perturbation in the case when the laser
noted that the growth of the ablation surface ripple is differ-iS uniformly irradiated on a target with a rippled surface. In
ent from the Richtmyer-MeshkotRM) instability, because Se€c. IV, we carry out an anglyss S|m_|lar to that in Sec. Il
in the RM instability there is a finite growth rate and no the case when the laser is nonuniformly irradiated on a
asymptotic amplitud§17,20,2]. On the other hand, in the _smopth target. The cases of constant and oscillating laser
case of nonuniform laser irradiation the growth rate of theliradiation with time are discussed in Secs. IV A and IV B,
ablation surface ripple reaches an asymptotic value. Therdespectively. A summary is given in Sec. V.
fore, it may be meaningless to express an amount of laser
imprint by an eguivalent init?al su_rface roughr_m{ﬂf], be- Il ANALYTICAL MODEL
cause the ablation surface ripple increases with time.

A weak intensity laser can be used as a prepulse in the Laser ablation drives a shock wave forward. In the case
start-up phase in order to prevent an entropy increase. Howvhen an initial surface roughness of a target is present, a
ever, a laser with a relatively strong intensffgr example, a  rippled shock wave is launched in accordance with the target
“picket fence” pulse lasef{23]) is also used in order to surface roughness. The rippled shock front oscillates as the
promote the ablative stabilization in the acceleration phase. Bhock propagates. Figure 1 shows a schematic of rippled
is thus important to investigate the laser intensity depenshock frontgsolid lineg driven by nonuniform laser ablation
dence of hydrodynamic perturbations. In addition, it is alsoinduced by the initial surface roughness of a target at succes-
interesting to estimate the laser wavelength dependence. Assave times oft; <t,<t;<t,. From experience based on geo-
result, it will be shown that laser irradiation at a high inten- metrical optics, we introduce “rays” defined as orthogonal
sity causes the ablation surface to distort, and laser irradidrajectories of successive rippled shock fronts. The rays are
tion at a short wavelength inhibits its deformation. shown as dashed lines. Initially, the shock driven by the

A partially coherent ligh{24,25 can be used as a laser ablation propagates normally to the ablation surface. One ray
beam, so that the nonuniformity of the laser irradiation istube becomes narrower and another ray tube becomes
smoothed out. In order to estimate target perturbationbroader as the shock propagates, and the difference of the ray
caused by the time varying nonuniformity of the laser irra-tube widths reaches a maximum at the titset;. At this
diation, it may be important to study the case when the nontime the density perturbation behind the shock front reaches
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The electron heat conduction should be taken into account to

@ a_ s obtain the structure of the ablation layer. However, physical
variables of the whole regions are simply obtained by means
g of the jump conditions at the shock front and through the
F ablation layer.
so We can write the mass, momentum, and energy conserva-
x tion equations across the shock frghetween regions 0 and
Distance Distance 1) as
FIG. 2. Schematic diagram of shock propagation driven by laser PoUs=p1(Us—vyq), (2.13
ablation;(a) x-t diagram;(b) density profile at a certain time. s, a,
and so denote the shock front, ablation front, and sonic point, re- Po+ PoU2=p1+ p1(Us—vy1)?, (2.1b
spectively. 0, 1, A, and 2 denote the unperturbed region, shock
compressed region, deflagration region, and isothermal rarefaction ho+ %ugzhﬁ_ L(us—v,)?, (2.10

region, respectively. The dashed line(@ shows fluid flow.

and across the ablation lay@yetween regions 1 and 2s
a maximum because the density is proportional to the inverse

of the ray tube width. The transverse velocity perturbation is P1(Ug—vy1) = po(Ug—vyo), (2.28
zero att=t; because the tangent of the ray trajectory corre-
sponds to the direction of the fluid velocity behind the shock P1+ p1(Ua—vx1)2=Pat pa(Ua—vy0)?  (2.2D

front. Since the pressure reaches a maximum in the narrow-

est tube and a minimum in the broadest tube, the pressure ) 1 )
perturbation has its maximum value at the titret,. The hyt 5 (Ua=va) ™ s =het 5 (Uamvie)”,
pressure perturbation generates the transverse flow. There- (2.20

fore, the phase of the fluid motion is reversed, and at the time
t=t, the ray tube widths become the safne., the density whereug, u,, andv, are the shock front, ablation surface
and pressure perturbations become gemd the transverse velocities, and fluid velocity in a laboratory frame, and
velocity perturbation reaches its maximum value. These prop, p, andh are the pressure, density, and enthalpy, respec-
cesses repeat dtt; andt=t,. The shock front ripple thus tively. | is the absorbed laser intensity=(y+1)/(y—1),
oscillates with the propagation. The rippled shock propagaand v is the isentropic exponent. The subscripts 0, 1, and 2
tion results in a hydrodynamic perturbation behind the shockgenote the values of the regions 0, 1, and the sonic point,
and a deformation of the ablation surface. respectively. We can expresg andus—uv,, by the pressure

In this section, we develop an analytical model in order top and specific volumé&/(= 1/p) from Egs.(2.13 and(2.1b
investigate a rippled shock wave and a nonuniform laser abas
lation caused by the initial surface roughness of a target or
nonuniform laser irradiation on a smooth target. We will Us Ug—Uyq [P1—Po
show that hydrodynamic perturbations caused by the rippled V_o: V, = Vo—V;'
shock propagation can be obtained by solving a sound wave
equation in the shock compressed region, with suitablesubstituting Eq(2.3) into Eq.(2.19, and using the enthalpy
boundary conditions at the shock front and the ablation surequation for an ideal fluith=ypV/(y—1), we obtain
face.

2.3

(voVo—V1)Po—(¥1V1—V()p1=0. (2.4

A. zeroth order profile The relations given by Eq$2.3) and(2.4) are familiar as the

At first, we briefly sketch the zeroth order profile of a RH jump conditions of a shock wave. In the same way, we
stationary shock wave driven by a steady laser ablation. Thebtain relations at the ablation surface from E2.2) (see
energy increase in the ablation layer due to electron thermappendix A):
conduction is thought to be due to combustion in a chemical
reaction wave, and thus the ablation layer is characterized by Ua—Uy1 Ua— Uy p1—pP, -
the deflagration wave. The ablation acts as a piston and v, vV, Vz_vlszplva, (2.9
drives a shock wave forward. Isothermal expansion follows
the deflagration, since the flow is generally nonstationary ol
behind the Chapman-Jouguet point where the flow velocity (v1V1—Vo)p1— (vVo—V)pp=— —, (2.6)
equals the local sound speed in a reference frame moving m
with the ablation surface. The domain can be then separated _
into four regions by the shock front, ablation front, and sonicwherem is the mass ablation rate, ang is the fluid velocity
point, as shown in Fig. 2. We label these regions 0, 1, A, andcross the ablation surface, namely, the ablation velocity.
2 from right to left. Region 0 is a uniform state ahead of theThe fluid velocity at the sonic point relative to the ablation
shock; region 1 is a shock compressed region; region A is asurface is equal to the isothermal sound speed at the sonic
ablation layer between the ablation front and the sonic pointpoint:
and region 2, beyond the sonic point, is an isothermal rar-
efaction region where the flow is self-similar and supersonic. Ua— Uyo=VPoVo. 2.7
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These relations are referred to as the CJ deflagration jump P
conditions[19]. —8s,=0, (2.80

It is known that once the uniform state ahead of the shock at’
and the absorbed laser intensity are given, one can uniquely .
determine the zeroth order variables in each region by usin§n€redp1, 6Vi, andéds, are the perturbations of the pres-
the jump conditions and the energy conservation of theéUre, specmc volume, and entropy in the compression region,
whole systenj19]. It is also possible to determine all zeroth "€Spectively.év,, and év,, arex andy components of the
order variables by using the jump conditions and Specifyingoerturbed fluid velocity, respectively. The perturbations
one of the variables, such as the ablation pressure, the madB1. 6Vi, andéds, are related through the law of thermo-
ablation rate, or the density at the sonic point. In this papeflynamics and the equation of state for an ideal gas as
we simply assume that the density at the sonic point is the
laser cutoff densityf26]. The sonic point density may not 5512 %er % 2.9
always be the cutoff density, especially for a short wave- C1 P tvy '
length laser. However, this assumption is not so inaccurate in
the case when a lo-target(e.g., CH is irradiated by a Wherec,; is the specific heat at constant volume in the re-
0.53-um laser. For a shorter wavelength laser, we can solv@ion 1. From Eq(2.8d, we see that the entropy perturbation
the zeroth order jump conditions by using the observed abiS only a function of positionx’. By using Egs.(2.8) and
lation pressureff,) or mass ablation ratet() instead of the (2.9), we obtain the homogeneous wave equation for the per-
cutoff density. turbed pressure:

p; is approximately proportional tt?° when the density
at the sonic point is the laser cutoff densigee Appendix
A). The analytical model described in this paper is applicable
even to different ablation model®7] in which the laser
intensity dependence of the ablation presspy@l) is not  wherec, is the sound speed in the regionc:= \y;p,V;.
123, as will be discussed in Sec. IV A. Introducing new nondimensional independent variabies
and 0 defined by

2 2
J 2 J 21,2
P&leclmﬂh—clk ops, (2.10

B. Perturbation analysis in shock compressed region r coshf= kclt’Ef (2.113

An initial surface roughness of a target or nonuniform
laser irradiation on a smooth target induces perturbations of r sinh 8=kx’' =x, (2.11b
pressure, volume, and velocity in regions 1, A, and 2. We

study the problem in a system of reference that moves withhe general solution of Eq2.10 is written as[15,16,2Q
the shock compressed region, in which the coordinates are

defined byx' =x—v,,t andt’=t. In this system, the shock . &p; b p
front and the ablation surface moves with velocities, plEE:%‘J (DZEWGJFDMe M)[DZ‘]#(”JFDMNM“)]'
—vy1 andu,—vy(=vy), respectively. All perturbed quan- (2.12

tities are assumed to depend on the transverse coordinate

proportional to expky), with a wave numbek. We assume whereJ, andN,, are Bessel and Neumann functions of the
that the initial surface modulation of the target is given aSorder u, respectively. The coefficien®? , D*;“ D;, and
aoexp(ky) in the initial target roughness case, and the abpd 55 \ell as the separation constant must be deter-
sorbed laser nonuniformity a8l exp(ky) in the nonuniform  yineq by the initial and boundary conditions. The coordi-
laser irradiation case, wheag andl are the amplitude of & pates of both shock and ablation fronts with the new vari-
surface roughness and the nonuniformity of the absorbed lay,jes are defined as, 0sandr,, 6., respectively. The

ser intensity, respectively. Moreover, we assume a small pefjomain of the variables are thus0 andd.< < 6. .
turbationag<\ (=2/k) or 81 <I, so that the equations can é S

be linearized. -
We can write the linearized fluid equations applied to the C. Boundary conditions
region 1 as We consider the boundary conditions at the shock front
and the ablation surface. Let us introduce the amplitude of
d d , the shock front ripple aas. The total derivative of the am-
E‘Wl_vl g&)xl“k&’yl =0, (2.89 plitude with respect to time is then equal to the perturbation

of the shock velocity, i.ea;=das/dt’ = su. We normalize

the amplitude by the wave numb&g= kas. By linearizing
9 J Egs. (2.3 and (2.4), and with the assumption of no pertur-
— vy = —V1— 6Py, (2.8  bation ahead of the shock, we obtain the relations among the
2 perturbed quantities at the shock front:

sus ay dag 1 déSKA( 0"
’ o o 4 cosho.dr. RaPalfs,0s),
— dvy=—1kV16py, (2.89 Ci C; dt coshdsdrg

at (2.133
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vxa(ls,05) =Kapa(rs, bs), (2.13b EJl(r,ﬂ):% (EMe_"(as_a)—}—F#e_“((’—oa))‘]#(r),
V(1,09 =Kspa(rs, 0s), (2139 (2.19
y1(rs, 09 =Kqag(ry), (2139  whereE,=D2D¢%e*% andF ,=D"D%e *’a are used in or-

der to defend exponential terms of Eg.12) against numeri-
where V=6V, /Vy, vy=0dvy/cy, and vy =idvy,/c;,  cal divergence. Following Zaid¢l5], let us define
and the coefficients are defined as

— Fa —sr
ntll _M§+1i A(S)—fo ag(r)e”*'dr, (2.163

- ) K - 1
Y4y B P 29,M2 Bs

= e —sr
1 va 2MI-1L) 1 P(s,0) fopl(r,ﬁ)e dr. (2.16b

_—' 4— —_— _.
yiMZB2 €1 2yMZ—(y1—1) Bs

K3:
Using the fact that the Laplace transform df(r) is

M, and s are the shock Mach numbers for the fluids ahead®” ““/coshq by definings=sinhgq, Eq. (2.15 becomes
of and behind the shock front, respectively. That is,

efl"q
— —p(0s—6) — (60— 0g)
M¢=uUg/Cq P(s,0) % (Ee® R )coshq'
and (2.17)
Bs=(Us—vy1)/Cy Using Eq.(2.17) and the fact that the Laplace transform of

wd,(r)/r is e #9, we can write Eqs(2.133 and(2.14) as

= V{(r1— DME+ 2H{2yME= (72— D} .
_ Ki(coshbg)P(s,6)+ag

Substituting Eqgs(2.13bH and (2.139d into Egs.(2.89 and A(s)= h , (2.183
(2.8b) at the shock fronti(=r and 6= 6,), we obtain an- sinhq
other shock boundary condition:

“ 1
R R T e aml6s—6y
o, K,P(s,8.)sinhq K2p10+§#‘, 71(E“ Fe M )
00

1

Yils

by
ar

2

+Ky(sinh 65)aq(rg)=0.
6=6, X e M+ K, (sinh 0)A(s)=0, (2.18b

) 2.14 ‘ )
We use Eqs(2.133 and(2.14) as the boundary conditions in Whereag andp;, are initial values of the normalized shock
order to determine the coefficients in the general solution ofiPple amplitude and the normalized pressure perturbation at

p; given by Eq.(2.12. Because the solution containing the the shock front, respectively. That igy=kap and p;q
Neumann function has been dropped in order to satisfy the=p4(0,0s). Substituting Eq(2.183 into Eq.(2.18h, we ob-
initial conditionp4(0,8) =finite, we can rewrite Eq2.12 as  tain

r=rg

1
> (K, sinttq+K K, sinh 6 coshfg) (Ep,+ F e Mfs™ fa))e~maq > y—sinh q coshq(Ep—F e M f))e—ma
m m 1

—K,p1esinh g coshq+ K ,a, sinh 65 coshg=0. (2.19

E., and F,, are determined by the independent equation®f the ablation layer A in Fig. 2 is very short compared with

obtained by setting the coefficients @f ™% equal to zero for  the wavelength of the perturbation(=2=/k). For the per-

all m. The indexu in Eqg. (2.19 is replaced by a positive turbation of which wavelength is comparable to the width of
integerm, so that terms witta, and p,, are consistent with the ablation layer or shorter than th_e width, one should con-
the other terms in Eq2.19. sider the thermal smoothing effect in the_ ablation I_ayer.

To close the problem we consider the boundary condi- In the same way as the shock front ripple, we introduce
tions at the ablation surface. In our analysis, we regard thée amplitude of the ablation surface rippleas The total
linearized CJ deflagration jump conditions as the boundar§ime derivative of the amplitude is equal to the perturbation
conditions at the ablation surface by assuming that the widtlef the ablation surface velocity, i.@,=da,/dt’ = du, . Af-
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ter the linearization of the CJ deflagration jump conditions t o a
with complicated calculation as shown in Appendix B, we <~
obtain ™
PRRST A 1 s
~ ~ ~ — A £ 1
a,— ov —pot+Vi—MV = i
a X1 _ P1—P2 £ 2' (2.203 :
Va 1-M tol/s ' { 0
a,— vy, 1 (. . v |\7(1—3|\7)\7 L - x
— —| p1— P> 1+F—V5, Distance
C2 1-M\ 1+M
(2.20B FIG. 3. x-t diagram of shock propagation driven by laser abla-

tion in a system of reference that moves with the shock compressed

(2.200 region. s, a, 0, 1, A, and 2 are the same as in Fig. 2. Dashed line
shows fluid flow.x; is an arbitrary coordinate in the compression
region, andt, andt; are times when the fluid at; crosses the
shock front and the ablation surface, respectively.

L1E)1+ L2\71+ L3E)2+ L4\72= L5i

In the above equations, the coefficients are

1+M  2-M (1+M)?2 _ _ _
= —+ v, — —, affect the flow in region 1. The assumption 8¥,=0 may
M 1-M 4M(1-M) not be a unique boundary condition. As a matter of fact, we
— obtain similar results, as will be explained in Sec. Ill, even if
L, 1 (1+M) we choose the boundary conditiagiT,=0 (T is the tem-
2— N

peraturg¢. The boundary conditiordT,=0 corresponds to
the assumption that large electron thermal conduction
smooth out the temperature perturbation near the sonic point

_+V2 ]
1-M  “4(1-M)

3=— l+iM +v, l_+ v2(1+M)(1 _SM) because of high temperature. As discussed in detail in Ap-
2M 1-M 4AM(1-M) pendix C, both boundary conditions 6¥,=0 andsT,=0

. . . _ result in a similar relation between the pressure and density

1-M M (1+M)(1—-3M) perturbations at the ablation surface. That is, the perturbation

L= 2 + Vll_ MJF V2 a(1— M) ' of the ablation pressure is very small compared with that of
the density at the ablation surface. This feature of the abla-

tion is also found in simulationf29] without these assump-

tions. Therefore, it should be possible to solve the problem in

region 1 by choosing “plausible” boundary conditions at the

sonic point.

wherel=61/1 andM=y,(v,/c;)?. v,/c, represents the Eliminatingp,, V», anda,— dvy, by using Eqs(2.200),

ablation Mach number which is much smaller than un|ty |n(2 200, (2.21), and (2.22, we obtain a relation among

general. We deflnepz—épzlpl, V2—5V2/V1, and v,, pl, V1' andl:

= vy, /C1, Where dp,, 6V,, and dv,, are the perturba-

tions of the pressure, specific volume, and fluid velocity at

the sonic point. Equatiof2.20 gives relations between the

perturbations at the ablation front and those at the sonic

] 1-M?2 . (1+M)2
=yt vy,
oM PP M

“ ~ 2.
p1=LeVit §|. (2.23

point.

We assume that the first-order quantities at the sonic point
satisfy the condition that the local Mach number is equal to

where

1[(M+1)(3M+1) M+2  (M+1)?
=— +Vl

unity [28]: 67 L, 6 3 27 g
a,— Suyo 5p2 3V, Po+ MV, At last, we consider the entropy perturbation in region 1.
o D N, W (2.21) Figure 3 shows am-t diagram in a system of reference that
2 2 z moves with the shock compressed region. The entropy per-
In addition, we assume turbation is conserved along a flow line as shown by Eq.
(2.8d. Then
V,=0, (2.22

S1(X§,t0)=51(x4,t5), (2.24

because the density of the sonic point is taken to be the laser -
cutoff density[26]. It is noted that we are not solving the Wher951—531/0u11 andty, t;, andxg are defined in Fig. 3.
perturbation in region 2. Rather, we replace that physics witk is an arbitrary coordinate in the compression region, and

Eqg. (2.21), and replace the assumption with EG.22. In

ty andt; are times when the fluid at; crosses the shock

this way, Egs.(2.19—(2.22 give enough boundary condi- front and the ablation surface, respectively. Using €9
tions for p; to be solved. This can be done because the flov@nd the fact that Eq42.130 and (2.23 represent the rela-
in region 2 expands supersonically, and neither sound ndions betweenp; and V; at the shock front and ablation
entropy waves in region 2 can cross the sonic point andurface, respectively, we can write .24 as
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P1(X,t1) =L7P1(Xg,th) +Lgl (t]), (2.29

where the coefficients are

27,

_Le(l-Kg) 2y
B T

T Letm

Transforming Eq(2.25 from the system ok’ andt’ to the
system ofr and 8, we have

(2.2

where a=sinh 8,/sinh 6;. Substituting Eq.(2.19 into Eq.
(2.26 and expanding the Bessel function with respeat.tp
we obtain

P1(ra,02)=Lps(ar,,0)+Lgl(ry),

> > [(Epe ™0 %+ F )—Lsam?
m=0 =0

_1| am+2| ~
e

(2.27)

X (Ep+Frne™ ™™ ea))]m

The expansion of with respect tar , is written as

o0

" 1
I(ra)=>

n=o0 N!

d"

dr" 0

rgznz bar, (2.29
0

r=

where ¢,=[d"/dr"],_o/n!. E,, and F,, are determined

R. ISHIZAKI AND K. NISHIHARA
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©

Pi(r 0)= > (Epp. e (2nt1(6s0)
n=0

+Fony € PO, (). (B3

Substituting Eq.(3.3) into Eg. (2.133 and integrating
with respect ta ¢ with the initial condition Eq(3.1), we can
write the shock front rippleg as

©

as(rs)=ap+Kj(cosh HS)HZO (E2ny1+Fant1€2n41)

xfrs\]zﬁl(r)dr, (3.4
0

wheree,=e "(%s~ %) Note also the relation which is ob-
tained from Eq.(2.19 whenq=0:

Qo

n§=:0 (BEont1t+Font1€on1)=— K, cosho.’ (3.5

It can be seen from Eq§3.4) and(3.5) thatés(rs)—>0 when
r—oo. Equation(3.4) can be expressed in a form

©

from the independent equations given by setting the coeffi-

cients ofr equal to zero for alln after substituting Eq.
(2.28 into Eq.(2.27. We have found thaE,, andF, with
evenm are independent dE,, and F,, with odd m in Eq.

(2.27 as well as in Eq(2.19. We can obtain the local pres-
sure perturbation in the shock compressed region by usin

the solution given by Eq(2.15 after the coefficients have

ay(rs)= 2, Gandan(Ts), (3.6
where the coefficient& are
Gozéo,
n—-1
G,n=2ay+ 2K (cosh 05)1;0 (Ezk+1+ Foks1€2k+1)-
(3.7

ghe perturbed density in the compression region is not given

by the isentropic formula because of the entropy perturbation
generated at the shock front. The local density perturbation is
given by Eq.(2.9 if the entropy perturbation is obtained.
Since the entropy perturbation is constant along a flow line
as shown by Eq(2.8d, we can regard that the entropy per-
turbation induced at the rippled shock front propagates with
the fluid. The specific volume perturbation is thus written as

been determined from Eq&.19 and(2.27), and can calcu-
late all other perturbed variables.

Ill. HYDRODYNAMIC PERTURBATION DRIVEN
BY AN INITIAL SURFACE ROUGHNESS
OF A TARGET

We consider a rippled shock wave driven by an initial

corrugated surface. Since the rippled shock wave is launched vy (r,0)=— if) (r 0)+( K o+ i E’ (r sinh 6 9 )
in accordance with the target surface, initial conditions are v y 37 4" sinhgg's)
given by (3.9

We can obtain thet component of the velocity perturbation
by solving Eq.(2.8b) with Eq.(2.13b (refer to Appendix D

and there is no initial perturbation of the pressure: o

Do = —(2n+1) (65— —(2n+1)(6-
UXl_nZO (Qonsre” PV O LR, e (2D 0a))

as(0)=a,(0)=ay, 1(ry))=0 (¢n=0), (3.1

P1(0,0)=P1o=0 (6,=6=6y). (3.2

. . . °° inh 6
The separation constant must be a positive odd integer to X ] )+ J r §|n ) 3.9
satisfy both the initial condition€3.1) and (3.2 and the zn+1(F) nZO San+1d2na| Fgpn | (39

boundary condition$2.19 and(2.27). Equation(2.15 thus

becomes where the coefficient®, R, andS are given by
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(3.100 "o 1o 20 30 40

. Normalized time r,
In the same way, we can also obtain theomponent of the

velocity perturbation by solving Eq2.89 with Eq. (2.13d FIG. 4. Normalized amplitude of the shock front ripplg/a, as
(refer to Appendix D. a function of normalized time; and the normalized amplitude of
Let us consider the ablation surface deformatign Us-  the ablation surface deformati@y /a, as a function of normalized
ing Egs.(2.203, (2.200, (2.22, and(2.23), a, is given by time, r,. Solid and dot-dashed lines shay/a, anda,/ag, re-
spectively. Circles and squares show the shock front ripple and
éa déa 1 déa ablation surface deformation, respectively, widn=0 instead of

— — = 2= +Lepi+Lyd 6V,=0. The dotted line showa./a, driven by a rippled piston.
¢, di coshe, dr, x1TLoP1TL1o 2 s/dg y a rippled p

4x 10" Wicn?, a laser wavelength ok, =0.53 um, a

_ 0 mass density op,=1.06 g/cni (CH targe}, a pressure of
_ngo Xant1Jan+alFa) Lad, .13 Po=0.703 Mbar(equivalent toT,=1 eV), and isentropic
exponents ofy,=3, v,=3, andy,=3. Once a rippled

where the coefficients are defined as shock is launched, a pressure perturbation is induced by the

_ — lateral fluid motion behind the shock front. The pressure per-

. :k( M+2) | vaM+2 turbation causes the ripple of the shock front to be reversed

9 2¢, Le | "1 ¢ 3Lg° and subsequently to oscillate, while the pressure perturbation

increases the deformation of the ablation front monoto-

and nously. The amplitude of the shock ripple decays as the

shock propagates. Since the pressure perturbation at the ab-
lation surface also decays with time, the deformation of the
X —W 4 Sy, ga? ablation surface approaches a finite value as shown in Fig. 4.
2n+17 H2n+1 T =21 It takes a longer time for an ablation surface deformation to
n-1 reach an asymptotic value as compared with an oscillation
+ D (Waops 1+ Sorr 102" 1= Xopes1) period of a rippled shock. It should also be noted that the
k=0 increase of the ablation surface deformation is different from
(—1)"K2n+1)! the RM instability! because in the RM instability there is a
x(n—k)'(n+k+1)' , (3.12  finite growth rate,a,#0 and thus no asymptotic amplitude
' ' [17,20,21. Circles and squares show the shock front ripple
with and the ablation surface deformation, respectively, for the
case when we chooséT,=0 instead of6V,=0 as the
Wont1=(Qons1+LoEons1)€me1+ (Rons1+LoFoni1), boundary condition at the sonic point. They coincide with
(3.13  the results of6V,=0.

. ) We compare a rippled shock wave driven by laser abla-
where we used Eq$3.3) and(3.9) in order to determine the i with that driven by a rippled rigid pistofdotted ling

coefficientX. Integrating Eq(3.11) with respect tar, With 16 18 in Fig. 4. As clearly seen in Fig. 4, the amplitude of

Xl:W1+ Sla,

the initial condition Eq(3.1), we obtain the shock surface ripple driven by the ablation decays rapidly
o n—1 compared with that driven by the rigid piston. That differ-
A.(r.)=a.+2 coshé X 3. ence can be understood from Fig. 5. Figurés) and 3b)
a(fa) =20 angl (kEO 2k+1) 2nf a)} illustrate rippled shock frontgs) and ablation surface&)

(3.14 immediately after the shock is driven and later, respectively.
. The lateral fluid motion behind the rippled shock front is
a, is a function ofr,=kc;ty1—{(us—vy)/cy}* because shown by arrows in Fig. ®). The fluid centered by the lat-
the ablation surface propagates along the trajectories of eral motion flows out to both the shock and ablation fronts,
=(Ug—vy)t’. as shown by arrows in Fig.(B). The fluid motion to the
Figure 4 shows the normalized perturbation amplitude okhock front causes the shock front ripple to decrease, and the
the rippled shock frontsolid line) as/ag as a function of the  phase of the ripple to be subsequently reversed. On the other
normalized time,rg, and that of the ablation fronfdot- hand, the fluid motion to the ablation front causes the abla-
dashed linga,/a, as a function of the normalized time, . tion surface deformation to grow. Moreover, there is mass
The parameters used are a laser intensity lof flow across the ablation surface that promotes fluid motion to
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FIG. 5. lllustrations of rippled shock front and ablation surface

(a) immediately after the shock is driven by uniform laser irradia-  FIG. 6. Normalized amplitude of the shock front ripjlg/a, as

tion on a target with a rippled surfacgn) A little later. s and a are  a function of normalized timers. Dotted and solid lines show

the same as in Fig. 2. Black arrows show the fluid flow, and whiteexact solutions ofag/a, for absorbed laser intensities df=

arrows show the direction of shock propagation. 1x 10 and 4x 10" Wi/cn?, respectively. Squares and circles are
corresponding approximate formulas.

the ablation surface. In the case of the rippled piston, there is

neither piston surface deformation nor mass flow across theg_(r (2B2-1)M2+1
surface. Therefore, in the case of the ablation, the pressurea—zJO(rs)JrZﬁ o(rg
perturbation behind the shock decays faster and the shock “° (2Bst1)Mg+1

front ripple also decays rapidly compared with the case of

2

the rigid piston. However, it should be noted that in both 2l 1— 4Mg
cases the amplitude of the rippled shock surface decays (2,3§+ 1)|v|§+1
asymptotically in proportion to the reciprocal of the square
root of time,t~ 2. X(3§M§+2)(1+3B§)+M§ﬁ§(3+ﬁ§) st

In a weak shock limit, in the expression af given by 2 2 2,2 2 |Yalls).
Egs. (3.6) and (3.7), the first and second terms including (Ms+1)(1+355)+2MsB5(3+ Bs)
E, and F; are dominant. Using the fact of (3.17
L,cLgx1/LgxMoc(v,/cq)?<1, from Egs.(2.19 and(2.27) _ _
E, andF, are written as It should be noted that shocks driven by both ablation and

piston have the same behavior for a very weak shigick

27.K 434 sinh 6 =1 (equivalent toBs=1), as shown by Egs(3.16 and

E,=— , (3.153 (3.17). Since in that limit the shocks propagate approxi-
(71K2+1) = (y1K2—1)e7 mately with a sound speed in a reference system that moves
with the shock compressed region, the information of the
2y,K 430 sinh 6.8, ablation surface deformation and mass flow across the abla-
= 5 (3.15h  tion surface can no longer reach the shock front. Therefore,
(71Ka+ 1) = (71Kz—1)eg the shock front ripples behave the same way for both cases in
. ) ) ) the weak shock limit.
In addition, usingg,<1 (equivalent ta,/c;<1), we obtain On the other hand, the calculationaf is not as straight-
forward as that of. It seems reasonable that in the weak
as(t) 2M3+2 shock limit the coefficienX expressed by Eq3.12 is ap-
a0 =Jo(rs)+ 3M§+1‘]2(rs) proximated as
X[rs=keyty1—(Us—vyp)Z/cl].  (3.16 Xon1=Xge 2"Vl (n=1). (3.18

We show the comparison between this approximate formuld herefore, substituting Eq3.18 into Eq. (3.14), we can
(symbolg and the exact solutiodlines) in Fig. 6. Squares Write a, as
and the dotted line and circles and the solid line represent the

shock front behaviors witth=1x 102 W/cn? (M¢=1.15) ay(ra)=ap+X[1-Jo(ra)]

and|=4x10" W/cn? (M.=3.43), respectively. The for- .

mula given by Eq.(3.16 agrees quite well with the exact 1—e 2n=1)0,

solution not only for a small Mach number, but also for a +2X3nzl  1—e20a Jan(ra). (319

relatively large Mach number. The shock front ripple is re-

versed faster for a larger shock Mach number, as shown i[1J ; -

; ) ) . ’ . _Using the fact thatr<<1 (equivalent to6,<1), andE; and
Fig. 6..S|nce the lateral flow behind the rippled shock front |s|:l are more dominant tha, andF 5, we can obtair, and
larger in the case of the stronger shock, the flow causes tl"y

shock front ripple to decrease fastsee Fig. 5 The shock 3 With the following approximate equations:

front ripple thus decreases and is reversed more quickly. In 1

the weak shock limit, the surface ripple of the shock wave Xi=W;=— —(E,e;—F), (3.208
driven by a rippled piston is approximately given p] 1
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FIG. 7. Normalized amplitude of the ablation surface deforma- (b)

tion a,/ay as a function of normalized time, . Dotted and solid
lines show exact solutions et /a, for absorbed laser intensities of
I =1x10 and 4x 10** W/cn?, respectively. Squares and circles
are corresponding approximate formulas.

Ablation surface deformation
a,la,

2
X3:W3:_ _(Elel_Fl). (320[2)

Y1
Therefore, substituting Eq43.20 into Eq.(3.19, and using % T T T T T T e
0a<1, we can obtain Normalized time r,
ay(t) 8M§(M§—1) FIG. 8. (a) Normalized amplitude of the shock front ripple

=1+ a,/ag as a function of normalized time,. Solid, dashed, dotted
2 2 s/ ag s , f y
ao (BMs+1){2y:Ms— (71— 1)} and dot-dashed lines show shock front ripples for laser wavelengths

of A\, =1.06, 0.53, 0.35, and 0.2xm, respectively(b) Normal-
ized amplitude of the ablation surface deformatigiia, as a func-
tion of normalized timer , . The definitions of lines are the same as
in (a).

X[1=Jg(ra)+4>

n=1

ra=kcitVl—(va/cy)?=keit], (3.2 , ,
[ra=key (valCy i), (329 This can be understood from the scaling laws of the ab-

where we used,/c, instead ofé, in the exponential terms. Ia}tion pressure and the mass ablation rate on the wavelength
In Ref.[9], the asymptotic value d, is estimated by using 9iven by Eq.(A11). Both the pressure and the mass ablation
va/c;<1. The results of this approximate formula and therate become large -for a short wavelength laser. However,
exact solution are shown by symbols and lines in Fig. 7sincep;=\, %3 andmo), %3, the increase of the mass ab-
respectively. The definitions of the symbols and lines are théation rate dominates over that of the pressure for the short
same as those in Fig. 6. The formula agrees quite well withwavelength. Thus the deformation of the ablation surface is
the exact solution for a small Mach number. The formulasuppressed for the short wavelength laser. Since the shock is
also agrees fairly well with the exact solution within the relatively strong whichever laser wavelength is used in the
short duration ofr <25, even for a relatively large Mach parameters here, we can estimate the shock front ripple and
number. The deviation of the approximate formula from thethe asymptotic ablation surface deformation from Egsl
exact solution is caused by the approximation of 18, and(3.21) as

that is incorrect for a large Mach number. The ablation sur-

* ( 1—e~2(n—Lugley

) JZn(ra)

1_e72valcl

face deformation becomes larger as the shock is stronger, as as(rs) ~Jo(ro)+ EJ (ro) (3.223
shown in Fig. 7. This can be understood as the lateral flow ag Ol gr2tish '
behind the shock front promotes more deformation of the
ablation surface since the flow is larger in the stronger shock Qa0 4 c

g g S R (3.22H
case. ao 3y, Va

Figures 8a) and 8b) show the laser wavelength depen-
dence of the shock front ripple and the ablation surface dewherea,., is an asymptotic value af,. The behavior of the
formation, respectively. They are calculated by using exacshock front does not depend on the laser wavelength. On the
solutions. We choosg, =1.06 u m (solid ling), 0.53 um  other hand, the ablation surface deformation depends on the
(dashed ling 0.35 u m (dotted ling, and 0.25u m (dot-  ablation Mach numbew,/c,. That is, since,/c, becomes
dashed ling as the wavelengths, called, 2w, 3w, and larger as\, becomes smaller, as shown by EA13), the
4w, respectively. The absorbed laser intensity lis ablation surface deformation becomes smaller, as shown by
4x 10" W/cn?, and the other parameters are the same akg. (3.228. In physics, a large ,/c, indicates that the ab-
those in Fig. 4. There is little difference among the shockation is promoted much more. Therefore, the ablation inhib-
front ripples, as shown in Fig.(8. On the contrary, the its the deformation of the ablation surface for the short wave-
ablation surface deformation becomes smaller as the laségngth. The scaling laws of the ablation pressure and the
wavelength is shorter as shown in FigbB mass ablation rate are obtained from the assumption that the
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FIG. 9. Normalized asymptotic value of the ablation surface Y1/n=1 k=0

deformation a,./a; as a function of shock intensity, p(

—po)/p1- Closed circles and triangles show the exact solution and J -] sinh 6, 3.2
; ; X 2n(rs) on| Fag ' ( . 3
approximate formula ob,./a,, respectively. Squares show rela- sinh 6
tions between the absorbed laser intensity and shock intensity.
where the coefficient® andN are
density of the sonic point is equal to the laser cutoff density. L
Thus a quantitative analysis is still required. However, the .
— — —k-1 2(n—k-1)+1}6

qualitative results should be correct. Mo=0, Mgy= ZO 2(=1)" K ey g2 DS,

Figure 9 shows t_he asymptotic valuesagfas a function (3.26
of the shock intensity,[{; — po)/p;- It should be noted that
in our model the shock intensity is determined by the ab- n-1

sorbed laser intensity through the deflagration jump condi- Ny=0, Ny,= >, 2(—1)" KF .0 2Nk~ D+1}6,
tions. The relation between them is shown by squares in Fig. k=0

9 that can provide the absorbed laser intensity dependence of (3.27)

the asymptotic values. We see a good agreement between the i i
approximate formuldtriangles given by Eq.(3.22 and the We can jthus evaluate the areal_ mass density perturbation by
exact solutions(closed circles for the weak shock. The Substituting Eqs(3.6) and(3.14 into Eq. (3.29.

asymptotic value of the ablation surface deformation in_exIr;rliqn?;n[ti]llr\évsuﬁ[g?q'ﬂsd ;?aenszfeor;eﬂgg\gg?ﬁeﬁg%?gs
creases monotonously as the shock intensity increases. Ho Ay ' P

ever, the exact solutions do not increase so much for th\%ose in Fig. 4. Good agreement between the theory and the
' .gxperiment is found in the amplitude of the shock front

strong shock case, equivalent to the high absorbed laser IrPl’pple and the areal mass density perturbation. It should be

; 3
tensity of =4 10" W/c.rrf. ) ) mentioned that two-dimensional simulations also predict the
One of popular quantities accessible to experimental Me3syperimental resultgs].

surement is an areal mass density. It is thus interesting to
obtain information about its temporal evolution. The areal

mass densityl is given by the following equation in the IV. HYDRODYNAMIC PERTURBATION DRIVEN
|ab0rat0ry system: BY NONUNIFORM LASER IRRADIATION

ON A SMOOTH TARGET

A. Constant nonuniform laser irradiation

ik
pl(y,t)= quHaS(t)e_ y{pl+ Sp1(x,1)e* dx We investigate a rippled shock driven by nonuniform la-
Uat+ag(t)e' ser irradiation on a smooth target. In this subsection, we
X consider the constant nonuniformity of the laser absorption
+f ~ podX, (3.23  with time. Initial conditions are then given by
ugt+ag(t)e'ky

as(0)=a,(0)=a,=0, i(ry=ly, (4.2)

wherex; is an initial target thickness. Noting that the initial
perturbation of the areal mass density &)= — poag, we
can write the first-order quantitypl of Eqg. (3.23 as

wherel , is a constant value. From E(.28), the latter equa-
tion in Eq. (4.1) is equivalent to

bo=log, Sm=0 (M=1). 4.2)

Spl(t) :( P
(6ph)o Po

as(t) p1aa(t) (ustdpy(xb) _ o
ag + vo 8 dx. In the same way as in Sec. lll, we obtain an initial value of

a
uat  PoSo (3.24  the pressure perturbation by using EG&26 and (4.1):

. Lg -
. - i =p1(0,0)= ——I 0.,<6<46,). 4.3
Substituting Eq(3.8) throughdp;= —p;V;, we obtain P10=P1 1-L,° (6a °
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The separation constant must be a positive even integer to Normalized time 7,

satisfy the initial condition$4.1) and(4.3) and the boundary
conditions(2.19 and(2.27). Equation(2.15 thus becomes

p1(r,0)= 20 (Egne™ 200 1 F, @™ 20(0-0)) 3, ().
(4.4

Using Eq.(2.133 with Eq. (4.1), we can writeag as

~ - rs
ag(rs)=Ky(cosh es)ngo (E2ntF2n€2n) fo Jon(r)dr.

(4.5
The relation obtained from E@2.19 with g=0 is
2 (EantFanezn) =0. (4.6

It can be seen from Eqé4.5) and(4.6) thatag(rs)—0 when
r«—o. Equation(4.5 can be expressed in a form

©

aS(rS):nZO Gan+1d2n+1(rs), 4.7

with

n

Gzn+1=2K1(coshes>k§O<E2k+F2ke2k>. (4.9

We can obtain th& component of the velocity perturbation

by solving Eqg.(2.8b with Eq. (2.13h in the same way as
Appendix D. Then

Ve = HZO (Qone™ 2059 4+ Ry e~ 200702y 3, (1)

= sinh ¢
+nzo SZnJZH( r sin—has)’ (4.9
where the coefficient®, R, andS are given by
1 n
Qon=— z( 2k§=:0 Exe®" M%—E, |, (4.103

l n
Rzn:y_l( Zgo Fo@™ "% an) ,  (4.10b

Son=K3(Eant F2n€2n) = (Q2nt Ron€2y).  (4.100
Using Eqgs.(3.11), (4.4), and(4.9), the time derivative of,
is given by
a, -~ . R .
L Ux1tLopitLig = HZO Xondon(ra) +Laglg
(4.11

where the coefficients are defined as
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FIG. 10. Normalized amplitude of the shock front ripig/T,
as a function of normalized time; and the normalized growth

rate of the ablation surface ripplée(/cl)/fo as a function of nor-
malized timey,.

Xo=Wop+ S,

n—-1
Xan=Wy,+ Syna®"+ go (Wi + Sppa®™— Xz

(—D)"42n)!
(n=k)!'(n+k)!"’ (4.12

with
W, =(QzntLoEon) €+ (RontLoFan).  (4.13

Integrating Eq(4.11) with respect ta , with the initial con-
dition Eqg. (4.1), we obtain:

n

> X
&0

+ L0l of o COSh,. (4.14

a,(ra) =2(cosh ea>n§0 { J2n+1<ra>}

In this problem, since the nonuniformity is continuously
supplied by the laser, there is a finite asymptotic value of the
growth rate of the ablation surface ripple, contrary to the
problem in Sec. lll. It is thus essential to estimate the growth
rate of the ablation surface ripple given by E4.11) rather
than the deformation amplitude of the ablation surface given
by Eq. (4.14. Figure 10 shows the normalized shock front

ripple a,/1, as a function ofr; and the normalized growth

rate of the ablation surface ripplée(/cl)lfo as a function of

ro. The parameters used are the same as those in Fig. 4.
Since the laser intensity perturbation drives the ablation pres-
sure perturbation that induces the shock front ripple for an
instant, the shock front ripple increase with time. On the
other hand, the lateral flow behind the shock front causes the
shock front ripple to decrease, as mentioned in SedsHé

Fig. 5. Therefore, the shock front ripple increases with time
at first and decays subsequently, as shown in Fig. 10. The
first maximum of the dimensionless shock front ripple
reaches a value of 0.65 atr,~2 for the parameters used.
The ablation surface is distorted by the lateral flow, and its
growth rate increases monotonously and approaches a finite
value, as shown in Fig. 10.
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In the weak shock limit, it seems reasonable that the first, 1 T . r .

second, and third terms including,, Fo, E,, F,, Ea,

andF,, are dominant in the expression af given by Eqg.

(4.7). Using the fact ofL,=0 and Lg=3 with Lg<1,

Eo, Fo, E», F,, E4, and F,, are approximated from

Egs.(2.19 and(2.27), with the initial conditions Eqs(4.1)
and(4.2), as

Eozélo, (415&)
Fo=1T,, (4.15H

B zi Y1Ks+2(y1Kz—1)e,
3 % y1Ko+1)— (71K~ 1)e,’

E,~ (4.150

_ EA Y1Ks€+2(y1K,+1)
3 %(y1Ko+ 1) — (71K~ 1)ey’

F, (4.150
_ y1Ks(Ea+F2€)— % y1Kalo(1+e4) + 5104

o (y1Ko+1) = (y1K;—1)eg ’
(4.159

_ y1Ks(Ea+Fo)es+ 5 v1Kolo(1+e,) + 310

4 (y1Ko+1) = (y1K;—1)eg ’
(4.15

where the coefficienKs is

M2-1

s
VlMglgs

In addition, ,<1 andeg<<1 (equivalent tov,/c,<<1), and
we obtain

Ks=4K K, sinh 65 cosh;—2K,=

ol
ay(t)= 17 [Ca1di(19) + Copds(r9) + Coss(r )]

[re=kcit\V1—(Uus—vyq)?/c3], (4.16
where the coefficients are given by
y1+1 (2-BHMZ+3
Cy=———= Co=Cq—i——,
3y1BsV1—Bs (2+BIMG+1
(2Bs—1)MZ+3
Z(2B+1)M2+1

4{2B(1— Bs)°M3—(1+ B5)%}
(1+BIH(2Bs+1)ME+1}

s3 ™

sl

In Ref. [9], the shock front ripple is roughly approximated

with the assumption of,;=0. The results of Eq4.16) are

-
° 2o BN
s 05} 2. E
o P 3
=
£oS ‘ s
o> o saer
& o)
x BUE’.%
-]
5 -ost .
o1 L L L
0 2 4 6 8 10

Normalized time r;

FIG. 11. Normalized amplitude of the shock front rippig/T,
as a function of normalized time. Dotted and solid lines show
exact solutions ofag/i, for absorbed laser intensities df=
1x 10" and 4x 10" Wi/cn?, respectively. Squares and circles are
corresponding approximate formulas.

both the small and relatively large Mach numbers. As men-
tioned before, the shock front ripple increases at first for both
Mach numbers. However, since the lateral flow behind the
shock front is larger as the shock is stronger, the shock front
ripple is reversed fastésee Fig. 5. Therefore, the first peak
value of the shock front ripple is smaller in the stronger
shock case.

We take the derivative of,/c; with respect tor, in
order to obtain an approximate formula for the growth rate of
the ablation surface ripple in the weak shock limit:

da,) <
ar (C—"")=2 Yan+1Jon+1(Ta), (4.17
a 1 n=0

where the coefficienY is
Y1=3(X2—=2X0),  Yon+1=3(Xons2—Xon). (4.18
The coefficientY can be approximated by
Yoni1=Yse 20720 (n=2), (4.19

Therefore, substituting Eq4.19 into Eq. (4.17) and inte-
grating with respect to,, we obtain

a,(ra)

=Laglo+Xo+ (Y14 Y3)[1—Jo(ra)]—2Y3dy(ry)

1— e 2n-2)6,

e )J2n<ra). (4.20

—e

+2Ys >
n=2

Using a?<1, we have

1 1 40,.
Y= E(WZ—ZWO)z - z_h(Ezez_ Fa)— 3_71|0'

(4.213

shown by symbols in Fig. 11. The exact solutions are shown

by lines. Squares and the dotted line and circles and the solid,

line represent the shock front behaviors with=
1x10'2 Wicm? (M =1.15) andl=4x10" wW/cn? (M,

=3.43), respectively, similarly to Fig. 6. We have found that

1 1 1
3= E(W4_W2): - 2_71(E2e2_ Fa)— 2_71(E4e4_ Fa)
40,.
-9, (4.210

those formulas agree quite well with the exact solutions for 71
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10 T T T T T

1 1 1
Ys= E(Wﬁ—W4)z - 2_71(E4e4_ Fa)— 2_m(Eeee_ Fe)

@, le) Ty

200,.

- lo. 4.21
3,)/1 0 ( O

Growth rate of ablation
surface ripple

Since we can regart,e,—F,= EGeG—F62—4TO/3 from
e,<1, Eq.(4.20 becomes

aa( ria)—/cl =Ca1+ Caol 1~ Jo(ra) ]~ Cagla(ra) Normalized time .
0 FIG. 12. Normalized growth rate of the ablation surface ripple
? [1—e2n-2uvalcy (a,/cy)/i, as a function of normalized time, . Dotted and solid
+ Ca42 (#) Jan(ra), lines show exact solutions o0& /c,)/1, for absorbed laser intensi-
n=2 1-e ties of | =1x10'2 and 4x 10'®* W/cn?, respectively. Squares and

(4.22 circles are corresponding approximate formulas.

where we used ,/c, instead off, in the exponential terms, Figures 18a) and 13b) show the laser wavelength depen-
and the coefficients are given by dence of the shock front ripple and the growth rate of
the ablation surface ripple, respectively. Solid, dashed,
MZ+1 dotted, and dot-dashed lines are the results Xof
Cal:3 M2,8 ' =1.06, 0.53, 0.35, and 0.2 m, respectively. Similarly
Y1MlsPs to Fig. 8, there is little differences in the shock front ripples
9 2 o among the different laser wavelengths. However, the growth
c :i - 5_2 (1+285)Ms+ Bs rate of the ablation surface ripple becomes smaller as the
42" 34, (o Bs{(2+B§)M§+ 1} ' laser wavelength becomes shorter. Since the shock is rela-
tively strong in the parameters used here, the behaviors of
4 v, (1+2B§)M§+,8§ the shock front ripple beco_me the same as shown in Eq.
Cas= —6—— > , (4.16. On the other hand, sinag,/c, is larger the shorter
3vilm G B2+ BOME+1}
(a) 1 . - . .
Cosm e 1522
In Ref.[9], the asymptotic value of, is estimated by using Ei 0 e .
v,/c,<<1. Integrating Eq(4.22 with respect ta, with the E
initial condition Eg.(4.1), we obtain the amplitude of the 5 -osf .
ablation surface deformation as
5 o 2 . s s o
85(1)= 7| (Ca1+ Cap)a—2CapJ1() = 2(Copt Cag) Normalized time
. c (b)
a4 6 T T T T
=22, f“cl_— 5 . .
2o -
1—e2(n—Duvgicy S8 4 =T ]
JE— o= = T e
X{n—-1- 1—e 20alc; Jon+1(ra) 28 2: sl ::__’__-.:-_':_____:
é*ﬁ g Lt _{/_;:r,--:,-—
[ra=kcitVl—(va/cy)?=Kkeqt]. (4.23 g b 3
Figure 12 shows the approximate form@ymbol$ and the e T i 1s 20 28 30
exact solution(lines) of the growth rate of the ablation sur- Normalized time .

face ripple. The definitions of symbols and lines are the same

as those in Fig. 11. We have good agreement between both FIG. 13. (a) Normalized amplitude of the shock front ripple
results not only in the weak shock case but also in the relaa,/i, as a function of normalized time,. Solid, dashed, dotted,
tively strong shock case, contrary to the relation between thend dot-dashed lines show shock front ripples for laser wavelengths
approximate formula and the exact solution of the ablatiorof A, =1.06, 0.53, 0.35, and 0.2xm, respectively(b) Normal-
surface deformation in Fig. 7. The growth rate of the ablatiorized growth rate of the ablation surface rippée, (c,)/1, as a func-
surface ripple is larger in the stronger shock case because tén of normalized timeg , . The definitions of lines are the same as
the larger lateral flow behind the shock front. in (a).
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. e . . . - 10 quency of the nonuniformity, respectively. Since variables at
§g . s £ the ablation surface become functions of the normalized time
© . > .
E'% R L é r., as mentioned above we rewriteas a function of ,:
H PR o SRR
55 < . . o 23
29 Lal o —1o‘“;E *_ 2 ~
55 . IS I =Tocog wry), (4.29
o=
%-‘3 3 - o J102 g
< <

o5 S T e T where the normalized oscillation frequeneyis defined by

Shock intensity (p, - p,)/p,
FIG. 14. Normalized asymptotic growth rate of the ablation sur- ~ w
ymp 9 w=——coshé,. (4.26

face ripple @,./c;)/1, as a function of shock intensity,p( ke,
—Ppo)/p1- Closed circles and triangles show exact solutions and

approximate formulas ofé(am/cl)lfo, respectively. Squares show ) o
relations between the absorbed laser intensity and shock intensityJSing Eq.(2.28), the coefficienty becomes

AL is, as mentioned in Sec. lll, the growth rate of the ablation N

surface ripple becomes smaller for the short wavelength, as é :(_l) o™ b -0 (4.27)
shown by Eq(4.22. These features are the same as those in nTgpyr T TendlTE :
the case of the initial target roughness discussed in Sec. Ill.

Figure 14 shows the normalized asymptotic valueé,pf
as a function of the shock intensityp{— po)/p1. We have a
good agreement between the approximate valtreangles
given by Eq.(4.22 and the exact solution&losed circles
for the weak shock. The asymptotic value increases monoto-
nously as the shock intensity increases; however, the in-
crease is small compared with the asymptotic value o

Fig. 9. That is, @ax/C1)/lo is 57 for low to high shock The initial value of the pressure perturbatif)[b is given by

intensity [0<(p;—po)/p1<1]. This is mainly due to the ~
YI0=(p1~po)/p1<1] y Eq. (4.3). Since the separation constantgpnmust be a posi-

normalization gfaa, €., 85 1S normahze@ by .the_ sound tive even integer to satisfy the initial and boundary condi-
speedc, that increases as the shock intensity increases,

Squares can provide the absorbed laser intensity depender®?S: P1 is given by Eq.(4.4). We can thus determine the
of the asymptotic value. coefficientsE andF by solving Egs.(2.19 and (2.27) with

We have used the CJ deflagration jump condition at th&dS: (4-3 and (4.27), and also determine all other coeffi-
ablation surface, which leads to the intensity dependence H€Nts: Using those results, the shock front ripple is ex-
the ablation pressure being given approximatelypyl)  Pressed by Eq4.9 or (4.7). _
«1253 as shown in Appendix A. This dependence gives a In the weak ;hock I|m|t,. it seems reasonable that the first,
good approximation when the direct deposition of the laseF€cond, and third terms includirly, Fo, E;, Fa2, Ea,
energy is near the critical density. However, when the energ@ndF,, are dominant in Eq(4.7) within w=<1. These coef-
deposition is distributed over some distance from the criticaficients are approximated from Eq&.19 and (2.27) with
density, a different intensity dependence of the ablation pres=ds. (4.3 and(4.27) as
sure should be used. Various models give different depen-

dences; for example, Ref27] summarizes thatp;xI|¢,

Initial conditions of the shock front ripple and the ablation
surface deformation are

a(0)=a,(0)=2a,=0. (4.28

0.57<=(=<0.86 for different models. Since our theory is E :ET (4.293
based on linear theory, both the amplitude of the shock front 030 '
ripple and the growth rate of the ablation surface deforma-
tion are approximately proportional #h The results shown
in Figs. 10-13 are obtained for the case . The results L
change accordingly for different dependences of the ablation Fo= §|0' (4298
pressure.
2. Ks+2(y1Ks—1)e
B. Nonuniform laser irradiation oscillating with time E,=— §|0 7iKst2(yiKo—be, 5
. . _ Ko+1)—(y1Ko—1)(1-2w)e
We also consider a case when the nonuniformity of the (7iKo+ =Ko~ 1)1 =207 4(4.2%
absorbed laser intensity oscillates with time,
1=1,coq wt), (4.24) "y
2. Kser,+2(y1Ko+1)(1-2w
F, Y1Ksex+2(y1Ka+1)( ), (4.290

~ ~ _|
wherel, and » are the amplitude and the oscillation fre- 3% (1Kot —(y1Ko—1)ey
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E — y1Ks(Ea+F2e0) — § 71Kol o= $10e4( 71K, —1)(1—8w?+8w*) (4.208
4 (y1Ko+1) = (y1Ky—1)eg ’ .

Y1Ks(Ext+Fop)eqt § y1Kolgeat 3To(71Ko+1)(1-8w?+ 8w
o (71K2+1) = (y1K2—1)eg ’

where we used. ;=0 andLg=3%. Substituting these coefficients into E@.7) and usingd,<1 andeg<1 (equivalent to
va/c;<1), we obtain the approximate formula of the shock front ripple withis1:

(4.299)

8l
a(1) =17 [Ca1da(r9) + Caala(r9) + Caads(rs)]  [re=keaty1—(Us—v,) i, (4.30
with
c i+l oo (27 BIMI+3-40?M(1- D)
1= 2 2= sl )
T omBn1-p T T (2+BHME+1

(2Bs—1HM3+3 4(1+ Bs)*—8MZBy(1- B)*(1- 8w’ +8w?)
s3™ .

228+ 1ME+1 (1+ B9 (2Bs+ )M+ 1}

Figure 15 shows the oscillation frequency dependence ofherefore, if the nonuniform wavelength ks=100 . m, @
the normalized shock front ripplas/i, as a function of . =1 means that the laser nonuniformity oscillates in the pe-
Symbols and lines show the results of the approximate forriod with T,.=6.3 ns. As shown in Fig. 15, the approximate
solid line and squares and the dotted line represent the resulis] pecause of the relatively weak laser intensity. The first
for the oscillation frequencies=1 and 2, respectively. The maximum value of the shock front ripple becomes smaller,
absorbed laser intensity is=1x10'2 Wi/cn?, the laser and its oscillation period becomes shorter as the oscillation
wavelength is\ =0.53 um, and the other parameters usedfrequency becomes higher. This can be understood as the
are the same as those in Fig. 4. Using E426 in those oscillating nonuniform laser irradiation reverses the ablation
parameters, the oscillation period of the perturbed laser inpressure perturbation that distorts the shock front ripple for
tensity, Tg, is written as an instant. The decay of the shock front ripple becomes
slower for the higher oscillation frequency because the shock
27 coshd, 20 front ripple is affected by the constrained oscillation of per-
= =— turbations at the ablation surface induced by the perturbed
wkey wkCV1=(va/cy)? laser intensity. However, the shock front ripple no longer
A (em)] depends on the frequency in the weak shock limit, since the
~0.06 - ns. (4.3)  information of the ablation surface cannot reach the shock
) front, as mentioned in Sec. lll. That is clear from the fact that
Eq. (4.30 becomes Eq(4.16 in that limit (Mg=B8s=1).
1 - - - . Let us consider the behavior of the ablation surface defor-
mation. The growth rate and the amplitude of the ablation
. . surface ripple are given by

0s

pple
o
[4.]
;
Jul
P

1,
o
er”
™

a; - - ~
_jzngo Xandan(@ra) +Laol €O wra),  (4.32

‘E-.E\‘ C

és
”
.

g

Shock front ri
o
o
Pid|
N

1 L ) L ! o0 n
0 2 4 6 8 10
> Xok
&0

a,(r,)=2(coshé,) ZO

Jzn+1(&)"a)}

Normalized time r;

FIG. 15. Normalized amplitude of the shock front ripig/T, R sin(or 5)
as a function of normalized time,. Solid and dotted lines show +Laolo COShOg———, (4.33

. ro A . . . .o~ w
exact solutions ofg/l, for normalized oscillation frequencias
=1 and 2, respectively. Circles and squares are corresponding ap-
proximate formulas oég/i,. where the coefficientX are
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XO:WO“FS(), ! ' j j

o
o
T
.

1 o .
in:“_Zn{ Wan+ Spna®+ kEO (Wat Spa® = X"
o =

@, fep)l iy
o

(—1)"%2n)!
(N—K)!(n+k)!

Growth rate of ablation
surface ripple
(=]
@

, (4.39

L
0 2 4 6 8 10

with W andS given by Eqs(4.13 and(4.1009, respectively.

In the weak shock limit, we can obtain the approximate
formula for the growth rate of the ablation surface ripple as |G, 16. Normalized growth rate of the ablation surface ripple
follows. It is not necessary to take the derivativeagficy  (a,/c,)/1, as a function of normalized time, . Solid and dotted
with respect tor,, contrary to Sec. IV A, because it Seems jines show exact solutions of /c,)/1, for normalized oscillation
reasonable that withim=1 the coefficientsK are given by  frequenciesn=1 and 2, respectively. Circles and squares are cor-

responding approximate formulas af,(/c,)/1,.

Normalized time r,

Xoakrny=Xz2 (k=0), Xpon=X; (k=1).

(4.35
1[M2+1 [2 5 d,
Therefore, substituting E@4.35 into Eq.(4.32 and using a Cal:g_yl M2 o g_ E 1T =g
familiar formula Jo(r,) +22,_,Jon(ra) =1, we obtain the sis
approximate formula > > 4 d
2
: Co=g—| 5= |di—=5|,
az(ry) 1 1 - 2 3y <w4 wz) Yo 1
=—(Xz+ Xy +| Xo— 5 X4 |Jo(wry)
(o8] 4 2
1 2 3 d,
1 R R C33=3— |\ d1+,\— ,
+ Z(X4_X2)+|—10|0 codwry). (4.3 Y1 o0° ®
. . with
Xo, X5, andX, are given by using Eq$4.10, (4.13), and
(434 o 2B DM B O(ME+ 1) (1+ D)+ aMEE)
1= INVE ’
2. 2+ BIMI+1
Xo=Wo+ Sp=3To(Kz+Lo), (4.373 Ad(2+ FIMs+1}
d,=1-8w?+8n”.
W,—2W, 1 . . . _—
Xp= %jLZ(WOjL So)=— —= (Eze,—Fy) Integrating Eq(4.38 with respect ta , with the initial con-
V1@ dition Eq. (4.28, we obtain the amplitude of the ablation
surface deformation as
KL 80a 4 4.37
3lo(Ka—Lo) 3702 (4.379 5l o
aa(t):W Carlat CaZJO Jo(wr)dr
W,—2W,+6W,  W,—2W,
= ~ A ———+2(Wp+ S) Caz . ~
w @ + ——sin(wr,)
w
2 4 E F ! E F w
=—| —— =<2 e,— - e,— ~
yil ot 52 (Exe,—Fy) 71&)4( 4€4—Fa) ra=Kkcit, wzk—cl). (4.39
+ L_lfO(KZJr Lo), (4.379 Figure _16 shows the oscillation frequenc_y dependence_of the
3 normalized growth rate of the ablation surface ripple

where we used a?<l. Since we can regard (az/cqy)/1, as a function ofr,. Thg results of the approxi-

- Y mate formulas and the exact solutions are shown by symbols
Ese4—F4=—4lo(1-8w"+8w")/3 frome,<1, EQ.(4.30  and Jines. The definitions of symbols and lines are the same
becomes as those in Fig. 15. The parameters used are also the same.

The approximate formulas agree quite well with the exact
solutions. The growth rate of the ablation surface ripple os-
cillates with the same period as the laser nonuniformity, be-
(4.39 cause the growth is directly induced by the pressure pertur-
bation at the ablation surface. We show the constant term
where the coefficients are given by C.1 in Eq. (4.38 that corresponds to the averaged growth

a,(ralc . .
a(A—a)l =Ca1+ Ca2do(wry) + Cyscog wr ,),

lo
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0.025 A A A ablation surface increases slowly compared with the oscilla-
gg 0.02 . 1 tion period of the shock front ripple, and approaches a finite
E'g/\ value. The growth of the deformation is thus different from
58T oos| 1 the RM instability. On the other hand, in the case of constant
%E g nonuniform laser irradiation the growth rate of the ablation
BsE Ut . ] surface approaches a finite value. We obtain scaling laws for
gg 0.005 F . ] the as_ymptqtic amplitude and growth rate with respect to
<° * laser intensity and laser wavelength. In both cases, it is

e : PO shown that laser irradiation with _hlgh intensityup _to
Normallzed oscillation frequency & ~4x 10" Wicn?) causes the ablation surface to distort,

while laser irradiation with short wavelength inhibits its de-

FIG. 17. Time averaged growth rate of the ablation surfaceformation because of the mass ablation effect.
ripple ((a,/c1)/1,) as a function of normalized oscillation fre-  The behaviors of the shock front ripple and the ablation
quency,®. surface deformation are also investigated in the case when
the nonuniformity of the laser irradiation oscillates with
. . : A . time. It is shown that the deformation of the ablation surface
rattf of the ablation surface rlpr(aaa/Acl)/lo), as a function is inhibited for a high frequency ab/(kc,)>1. We obtain
of w in Fig. 17. That value decays asincreases, as shown approximate formulas for temporal behaviors of the shock
by Eg. (4.38. Since the higher oscillation frequency front ripple and the ablation surface deformation in the weak
smoothes the nonuniform ablation pressure much more, thgnock limit. Those formulas agree with the exact solutions

averaged growth rate of the ablation surface ripple decreasegot only for a weak shock but also for a relatively strong
It is not easy to obtain the exact solution for a high frequencyshock.

limit because the convergence of the summation in Eq.

(4.32_). There_fore, the appro_ximate formula_m_ay_ not be accu- ACKNOWLEDGMENTS

rate in the high frequency limit. However, it is important to

estimate the growth rate in order to understand qualitatively We are grateful to Dr. J. G. Wouchuk for valuable sug-
the behavior of the ablation surface deformation. In the higtgestions relating the asymptotic formulas. We thank Dr. M.
frequency limit, there is no averaged growth rate of the abMurakami, Dr. Y. Shimuta, M. Honda, N. Matsui, K.
lation surface ripple for a weak shock, but a finite averagedshigemori, Dr. M. Nakai, Professor H. Azechi, Professor N.
growth rate may exist for a relatively strong shock, as showrMiyanaga, and Professor K. Mima for many useful discus-
by Eqg.(4.38), since a fluid motion driven by laser irradiation sions. We acknowledge support from the Japan Society for
for an instant remains. Appendix E shows the exact solutiothe Promotion of Scienc&SP$.

and approximate formula in the case that laser nonuniformity

is given byl =1,sin(wt) instead of Eq(4.24. APPENDIX A: CHAPMAN-JOUGUET DEFLAGRATION
JUMP CONDITIONS

V. CONCLUSIONS We can write the mass, momentum, and energy conserva-

) _ tion equations across the ablation laybetween regions 1
We have developed an analytical model for linear growthand 2 as

of hydrodynamic perturbations induced by nonuniform laser

ablation due to initial surface roughness of a target or non- PLUL=poUor=M, (Ala)
uniform laser irradiation. It is shown that a shock front ripple

, : . - - —
and deformation of an ablation surface driven by the nonuni P1+p102=Patpav2, (Alb)

form laser ablation interact with each other through a sound

wave and an entropy wave in the shock compressed region. 1 | 1
We have explicitly shown analytic solutions expressing the hy+ =02+ ——==h,+ -v3, (Alc)
shock front ripple and the ablation surface deformation by 2 p1U1 2

solving a linear wave equation with the RH jump condition .

at the shock front, the CJ deflagration jump condition at thevherev,=u,—uv,; (flow velocity across the ablation sur-
ablation surface, and plausible boundary conditions at theace; v,=u,—v,, (flow velocity across the sonic pojnt
sonic point.

An amplitude of the shock front ripple oscillates and de-, . Lo =
cays with time. The asymptotic oscillation period k() ", 1 IS the enthalpyh=1yp/[(y—1)p]. Eliminating v, from
and the decay rate is proportional to the reciprocal of théEqs.(Ala) and (A1b), we obtain
square root of time,” *2. The amplitude of the ripple decays _
rapidly compared with that driven by a rippled rigid piston, V2= P17 P2 P2
because of mass ablation. In the case of nonuniform laser P17 P2 P1
irradiation, the first maximum of the ripple amplitude de- B ingV instead ofp. this | d
pends weakly on the shock intensity; for example, the nor- y using Vv instead ofp, this 1S expressed as
malized amplitudéag/(61y/1) is ~0.65 for a laser intensity —
of 4x 1013 W/cn2, V1 [PiTP2 (A3)

In the case of target surface roughness, deformation of the Vi Vo=V,

is the absorbed laser energy;is the mass ablation rate; and

(A2)
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In the same way, we obtain

V2 _ P1—P2
V, Vo=V,

(Ad)

Substituting Egs(A3) and (A4) into Eq. (Alc), the energy
conservation equation becomes

71 L.2P17P2
1p1V1 2V1V ~V,
N > P1— P2
-1 p2V2 2 V2 V Vl . (AS)
Then
’y1+1 ’)/2+ 2|
,yl_lvl_VZ)pl_ 1V2— 1)p2—_a-
(AB)

On the other hand, by using Eqg\1a) and (A3), m is
written as

= — _U1_ P1—P2
p1l1 A V—V,

(A7)

If there is no energy absorption, namelly; 0, Eq.(A6) cor-
responds to the Hugoniot curve in theV diagram.
We briefly discuss the absorbed laser intensifydepen-

dence and the laser wavelength, | dependence of the ab-

lation pressure [f;), the mass ablation ratem), and the
ablation Mach numbern(;/c;) [19]. Using Eq.(2.7) and the

fact of V,>V, in general, the relation of the pressures at the
ablation surface 1 and at the sonic point 2 is approximately

given by
P2/p1=3 (A8)
The mass ablation rate thus becomes
_ P17 P2 [ P1
S VV,—V; V2vy (A9)

Substituting Eqs(A8) and(A9) into Eq.(A6), and eliminat-
ing p, andV,, we can writep, as

39| 2 1/3

—_— Al0
(2 + Vz) 2V2 ( )

P1=

wherev,=(y,+1)/(y,—1). In addition, using/,=\?2, we

obtain equations expressirlgand N\ dependences of the — Svy, Eq.(B3) is
X1

ablation pressur@; and the mass ablation rate as

| )2/3 . ( | ) 1/3
— s moc| —- .
AL )\‘,_1

P2 (A11)

The ablation pressure is thus larger as the laser intensity is
larger and the laser wavelength is shorter. The ablation Mach
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fact that the fluid velocity at the sonic point relative to the
ablation surface is equal to the isothermal sound spsed
Eq. (2.7)], we obtainpjv,=p»C,. Then

Va _ chz [ P2p2 (A12)
C1 plcl Y1P1P1’

In addition, usingp,/p;=3 and p23<1/)\ﬁ, and usingp;
= const in the case of a strong shock wave, we obtain

vy 1
—_C —

o N (A13)

That is, the ablation Mach numbey/c, becomes larger as
. becomes smaller. It should be noted thafc,<<1 from
the assumption o¥/,>V;.

APPENDIX B: LINEARIZED CHAPMAN-JOUGUET
DEFLAGRATION JUMP CONDITIONS

Linearized equations of Eq$Ala)—(Alc) are given by
[30]
8p1v1+ p18V1=8pauot p2duy, (B1a)

SP1+ Op1vi+2p101801= 8Py + Spav5+ 2,805,

(B1b)
Y1 5p1 P1 ol |
—_1( 5 8p1 | #0180+ —— — ——— 8(p1o1)
71 P1 pi pww1  (p1)?
Y2 [ 6P2 P2
=——F|———9 + 0,60, (Blo
Yo— 1( PR Pz P2 20U

Eliminating 50_2 from Eqgs.(B1a) and(B1lb), we obtain

8pa+ 9pa(201v,—v3) — Spov3.
(B2

2p1(01—v,) 601 =6py—

Using v, /v,= p,/p; given by Eq.(Ala), Sv; becomes

5U—1_ op1— 6P 2p1—p2 p1

= =505 o) 2 — p1t 52

vy 2(P1—P2)  2pi(p1—p2) p2(p1—p2)
(B3)
Using V instead of p and using 501—5ua Svy=a,

5U_1_ 8= 0uxy  Op1—6py  2Vp—V; 6V

vy Ua=va  2(p1—Pp2)  2(Va—=Vy) Vi
AL (B4)

2(V,=Vy)'

number is estimated in the following way. By using the mass

conservation across the ablation lajsge Eq(2.5)], and the

In the same Way;sz is given by
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Sup 8= duxe_ Spi—dp, Vi
vy Ua=Ux2  2(p1—P2)  2(Vi—Vy)
2V,—V, &V,
+ B5
2,V Y, (BS)

On the other hand, E¢gB1c) is written by usingV instead
of p as

— vy Sl 11 8m
—(5P1V1+p15V1)+01— Tt
Y1 vy m mm

51)2
=—(6p2V2+p25V2)+v2_ ,
Y2~ Uy

where dm is given by linearizing Eq(A7):

om_ Spy—p, SV~ oV,
m  2(p1—p2) 2(Vo—Vy)'

(B7)

Substituting Egs(B4), (B5), and (B7) into Eg. (B6), we
obtain

op1 oV P> oV, ol
L,—+L,—+Ly—+L;——=Lc—. B8
1 p]_ 2 Vl 3 pl 4 Vl 5 I ( )
The coefficients are
Vz)pz | 3p1—2p;
Li=|{1-v,— | —++———, B9
! ( 2V1 P1 m P17—P2 (B3
pz)Vz A
L,=—|1+v +—— B9b
2 2P1 Vi m Vo=V, (B9
Vz) | P1
Leae=—|1-vo—|—— B9c
3 ( V1] mP1—P2 (B9
p2> | Vi
L 1+v,—|—— B9
4 2P1 m Vo—V, (B9
2l
Lg=—, (B9e)
m

where v=(y+1)/(y—1). Equations(B4), (B5), and (B8)
correspond to the linearized equatidAs3), (A4), and(A6),
respectively.

Next, let us show that the coefficients in E¢B4), (B5),
and (B8) are expressed by only a new variabM

=v:1(va/cy)?, wherev, is the ablation velocity)azv_l. By
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On the other hand, usinﬁfcz: Vp2V, and Eq.(A4), an-
other relation is obtained:

[P1— P2
Uz—\/pzvz Vs V v

(B11)
Then
\ P1
—=2- B12
Vs, P2 (B12

Therefore, using EqgB10) and (B12), the following rela-
tions are shown:

p, 1+M
—=—, B13
0, 5 (B13a
V, 1+M ©13b
Vy 2M

We can considep,/p;=3% and M<1 because of/,>V; in
general.
Substituting Eq.(B13) into Egs.(B4) and (B5), we can
write
a3~ vy _ P1—Pa+Vi—MV,

= B14
Ua 1-M ( 3
a,— ov 1 (.~ .~ —. M(1-3M).
2= o _ _/p _p e (——)Vz-
C 1-M\ ' * 1+M
(B14b)
In the same way, the coefficients of E®8), L;~Lg, are
written as
1+M  2—-M (1+M)2
Li=—— v —=+v;———, (B153
M 1-M AM(1—M)
1 (1+M)?
Lo=—vi—=+; =, (B15b
1-M 4(1-M)
1+3M 1 (1+M)(1-3M)
L3:_ — +V1 —+V2 p— p—
2M 1-M AM(1—M)
(B150)
1-M M (1+M)(1-3M)
L4: +V1 2 —
2 1-M 4(1-M)
(B15d)
. 1-M?2 . (1+M)2 (B154
- —_— —V Vo——.
oM P awM

using the mass conservation between the ablation surface

and the sonic poinfEqg. (Ala)], and using the fact that the
fluid velocity at the sonic point relative to the ablation sur-
face is equal to the isothermal sound speed, we obtain

Then

— 0> )
E) - 2222
C1 Y picy

P1U1= poU2= p2Ca.

poVy
p.Vy

M=y,

(B10)

APPENDIX C: BOUNDARY CONDITIONS
AT THE SHOCK FRONT, ABLATION SURFACE,
AND SONIC POINT

The boundary conditions introduced in Sec. Il C are ob-
tained by linearizing the RH jump condition at the shock
front and the CJ jump condition at the ablation surface.
Therefore, the hydrodynamic motion at the boundaries is re-
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the perturbations at the sonic point. The linearized CJ defla-
gration jump conditions of Eq92.20 and (2.21) give the
relations between the perturbations at the ablation surface
and those at the sonic point. However, they are not enough to
give a unique relation among the variables at the ablation
surface and the sonic point. The additional condition of
6V,=0 or 6T,=0 results in the unique relations which are
shown by solid lines §p,,6V,) at the ablation surface and
by dotted lines §p,,5V,) at the sonic point in Figs. 18

and 18b) for the cases 0bV,=0 andsT,=0, respectively.

For example, in the case @V,=0, the perturbation of the
ablation pressure and the specific volume at the ablation sur-
face change along the solid line in Fig.(aB equivalently,
when the pressure and specific volume perturbations at the
ablation surface change along the solid line, the pressure
perturbation at the sonic point changes along the dotted line
(6V,=0). In Fig. 18a), the perturbed states at the ablation
surface given by the rhombuses on the solid ling, (
+6Vq,p1t+ 6p1)=(0.5,0.9995) and (2,1.0011), correspond

1ot e 10 107 10° to the perturbed states at the sonic point given by the closed

circles on the dotted line,\,,p,+ dp,)=(158.5,0.5005)
FIG. 18. Normalizech-V diagrams for shock and laser ablation, @Nd (158.5,0.5037), respectively. Figure()8shows the
Squares show the uniform state ahead of shock. The dashed li@Me as Fig. 18) for the case ofsT,=0. As clearly seen

shows the RH curve passing through the uniform state. Dotted linefom Figs. 18a) and 18b), the relations of the pressure and

show states at the sonic point whé® 8V,=0 and(b) 5T,=0. density perturbations at the ablation surface are almost the

Solid lines are states at the ablation surface corresponding to tfgame in both cases @V,=0 andéT,=0. The perturbation

stategdotted line$ at the sonic point. Closed circles show the statesof the ablation pressure is very small compared with that of

at the sonic point corresponding to rhombuses on the solid lines. the specific volume at the ablation surface. Even if a large

perturbation of the specific volume at the ablation surface is

stricted to satisfy the jump conditions. Since no perturbatiorpresent, it results in a small pressure change at the sonic

exists ahead of the shock, the perturbed variables at thgoint.

shock front change along the RH curdashed line in Figs.

18(a) and 18b)], more rigorously along the tangent of the APPENDIX D: DERIVATION OF THE LOCAL VELOCITY

RH curve at the pointfg;,V;) because of the linearization. PERTURBATION IN THE SHOCK

The parameters used in Figs.(@Band 18b) are a laser COMPRESSED REGION

intensity of | =4x 10" Wi/cn?, a laser wavelength ok

prg'SSSifem(;f?oEgégogeﬁggrg%ui%/;gn?/tgﬁ (chH t:\;?%n% solve the partial differentiaIAequatic(rZ.Sb) with the bound-

isentropic exponents of,=3, y,=3, andy,=2. In Fig.  ary condition(2.13h, wherep; is given by Eq.(3.3). Using

18, the square shows a uniform state ahead of the shock, af@'malized quantities, Eq2.8b is written as

the RH curve(dashed ling passes through the uniform state.
On the other hand, the perturbation at the ablation surface

propagates out through the ablation layer, although the per- ot

turbation in the isothermal expansion region does not affect

the surface beyond the sonic point. Thus we have to allovBy using Eq.(2.11), the following derivation is obtained:

Normalized volume V/V,

In the case of target surface roughness, we show how to

(9{})(1 - — i @ (D1)
Y1 9%

|
ﬁﬁl ; ‘961 1 aAl 1. S —(2n+1)(05— 0) —(2n+1)(6-0,)
a—)}:—(smh 0)7+F(cosh0)—=—§(smh 0)20 (Eopii€ s Y+ Fon. € a))(Jon(T)

1 o0
—Jons2(r))+ E(COSh 9);::0 (Egpsqe” MU0, 17 CNED0=02)) (3, (1) + Jn10(1))

1 12
= E(Ele_ bs—F,e%)Jo(r) + Engl (Egns18” %+ Ep,_sef)e 2003, (1)

©

— 52 (Fanese’at Fon o™ a)e 20005 (r), (D2)
n=
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On the other handdv,, /4t is written through the relation Noting X=r sinh 6,=r sinh 6, f is written as

with Eq. (2.11) as

O’Il)xl_ (?l;xl 1 ) ﬂ;xl
7 =(cosh#) ar F(smha) 70

(D3)

0,1 should be expressed by the following equation in order

for Egs.(D2) and(D3) to satisfy Eq.(D1):

O —(2 1)(6— 6
le_zo (Qzn+1€ (2n+1)(65=6)
=

+Ronsae” BT 354 (1), (D4)

where the coefficient® andR are determined by the coef-
ficients E and F, as mentioned below. Since the general

solution off)xl is obtained by adding an integral constant to

Eq. (D4), we can write

©

Uy1= 20 (Qqpy 18" BNF10—0)

n=

+Rgpy g€ MV 0) 3, () +f(x), (D5)
wherex=r sinh @ is noted. Substituting EqD5) into Eq.
(D3), we obtain

o 1 1o .
“=a-(Q.e s+ Rye%)Jo(r)+ 5>, (Qonsi€
[yt 2 2n:1

oo

1
—Qan-18")e 2" Dp(r) + 53 (Rons1e’s
n=1

—Rgn_18 P2)e 2007, (1). (D6)

Therefore, after substituting Eq$D2) and (D6) into Eq.
(D1), and setting the coefficients @ 2"(%~9J, (r) and
e 2"(?=% 3, (r) equal to zero for alh, Q, andR are given
by the equations

1 n
Qzns1=— z( ZIZO E2k+1ez(n7k)05_ E2n+1) )
(D74)
n

1
R2n+l=_(22 Foxs1€ 2" % —F, ., |. (D7h
Y1\ k=0

Let us determine the integral constentSince Eq.(2.13b

gives the relation betweem,; andp; at the shock frontr(
=rg and = 6;), we obtain

©

le(rs ’ 05) = E (Q2n+1+ R2n+1e7(2n+l)(957 ‘93))J2n+1(l'5)

+f(rg sinh 6;)

=K3>, (Egni1+Fonie” 2MHH0s=0%)) (DY)
n=0

. - sinh 6
f(r sinh 9)220 Son+1d2n+1 " Sinh oy’ (D9)

with

Son+1=Ka(Egns 1+ Faonyge” M DI 1))

—(Qans1+Ron1e” @+ )) - (D10)

Thereforep,, is given by

~ —(2n+1)(6.— 6
Ux1= Eo (Qgns18” )(0s=0)
=

+Rgpiqe” BFDE0) 3, (1)

sinh @
). (D11

+ zo Son+1d2n+ 1( " Snho. o,

In the same way, thg component of the velocity pertur-
bation is obtained by solving E42.89 with Eq. (2.130:

Dy1= 2, (Tone M0+ Ugne 2007 0) 3o (r)

(D12)

sinh 0)

+n§0 Vandan| 1 sinh 6

where the coefficients are

n—1
To=0, To=— >, Ep 12" 0 "U% (D139
Y1 k=0

5 -l
Up=0, Up=— 2 Fyyie 2707 U0%,
Y1 k=0
(D13b)
Von=K4Gon—(Ton+ Uzn€sn). (D139

Next we show,; ando, in the case of laser nonuniform
irradiation described in Sec. IV A. By solving E@2.8b
with Eq. (2.13b wherep; is given by Eq(4.4), v, is writ-
ten as

[

Ux1= nZO (QZne_znws_ 9+ Rone™ 2n(6- ea))JZn(r)

= sinh 6
+ n§=‘,o 82nJ2n< r W), (D14)
where the coefficient®, R, andS are given by
1 n
Qon=-— Z( 2k§=:O Exe®" W%s—E,,|, (D153

1 n
R2n=z( 22, F2ke2<”k“’a—F2n), (D15b)
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S;n=Ka(EzntFon€n) = (Qznt Ran€zn), (D150

and by solving Eq(2.80 with Eq. (2.130, vy, is written as

©

Vy1= D (Tonsge B D070
n=0

+ U2n+1e_(2n+1)(0_ Ba))‘]ZnJrl(r)

” sinh @
+nzo Von+1dan+1 FSinho.)” (D16)
where the coefficients are
2 n
Toni1=— >, Epel2n -t (D17a
Y1 k=0
2 n
Upnii=— X, Fpe MR+ l%b  (D17h

P
Voni1=KaGons1—(Tons 1+t Uzni1€2041). (D170
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APPENDIX E: A CASE WHERE LASER NONUNIFORMITY
IS GIVEN BY A SINE FUNCTION

We mention a case where the nonuniformity of the ab-
sorbed laser intensity is given by

I=Tgsin(wr,). (ED)

The coefficientsp become
(=" .

— 2n+1
¢2n+1 (2n+1)|w '

¢2n201 (EZ)
Therefore, the coefficientg,, and F, with odd m solved
from Egs.(2.19 and (2.27 dominate perturbed variables.
The pressure perturbation is thus expressed byE§). The
shock front ripple is given by Ed3.6), and the growth rate
of the ablation surface ripple is given by

a4, & . o
C_’j:nzo Xon+1d2n+1(@ra) +LiglgsiN(wry),  (E3)

where the coefficientX are

1
X1==(W;+S;a),
w

n—1

1
— 2n+1 2n+1 2n
Xon+1= 75077 Wen+ 1t Son 1 +k20 (Wi 11 Sppr 1@ "= Xo 1@
o =

with W and S given by Eqs(3.13 and(3.109, respectively.

~onip, (ZD" @20+ 1)
‘(n—k) ! (n+k+1)! |’

(E4)

In the weak shock limit, it seems reasonable thats written within w=1 as

él
ay(t)= 17 [Cada(r ) + Copda(r) +Cagda(ro)]  [re=keatV1=(us=v,a)7/c]],

where the coefficients are

4(y1+1)M20

(E9

2M3(1+3B2)— (MZ=3)(3+ B2) +(3—40?) (1~ B2)(3MS+1)

sl s27 Vsl

3y18(3M2+ 1)

(2Bs—1)M2+3

2M2(1+389) +(M2+1)(3+ 82)

4(1+ Be)°—2B«3M2+1)(1— Bs)?(5— 20w?+ 160%)

s3™ sl

(2B 1)M2+1

(1+B9%(2Bs+ 1)M2+1}

In that limit, it seems reasonable that the growth rate of the ablation surface ripple is obtained by

aa(ra)/cy
io
where the coefficients are

1
371

@)
|

al™

1
— A_2_4

w

1
d;+ "_2d2
w

with

0

(E®)
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(1+2BHM2+1 AMZ(M2-1)(1— B2)%+(3— 4w?)(3M2+1){2M2B%(3+ B2)+ (M2+ 1) (1+382)}
Bs(3MZ+1) B(BMZ+1){2M2(1+382) +(M2+1)(3+ 82)}

Integrating Eq.(E6) with respect tar, with the initial condition Eq.(4.28), we obtain the amplitude of the ablation surface
deformation as

Slo .
a,(t)= 1" o=

key)* &

Fa L’;)r Ca2 ~
Calj drf dr'Jo(r')+ —{1—-coqwr,)} ra=kct,
0 0 )

These results are the same as those in the case when the laser nonuniformity is given(ag3EqThat is, the first
maximum value of the shock front ripple becomes smaller, and its oscillation period becomes shorter as the oscillation
frequency becomes higher. The decay of the shock front ripple becomes slower. On the other hand, the growth rate of the
ablation surface ripple oscillates in the same period as the laser nonuniformity. Its averaged value decays as the oscillation

frequency increases.
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