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Model of hydrodynamic perturbation growth in the start-up phase of laser implosion

R. Ishizaki* and K. Nishihara
Institute of Laser Engineering, Osaka University, 2-6 Yamada-oka, Suita, Osaka 565-0871, Japan

~Received 10 July 1997; revised manuscript received 13 May 1998!

A simple analytical model is presented to study hydrodynamic perturbation growths driven by nonuniform
laser ablation in the start-up phase in laser fusion. Propagation of a rippled shock and deformation of an
ablation surface are studied for cases of initial target roughness and nonuniform laser irradiation. The study of
the perturbation growth in the start-up phase is very important because it seeds the Rayleigh-Taylor instability
in the subsequent acceleration and stagnation phases. Analytical solutions are obtained for temporal evolutions
of the shock front ripple and the ablation surface deformation. As a result, it is seen that the shock front ripples
oscillate and decay in both cases. On the other hand, there is an asymptotic amplitude of the ablation surface
deformation in the case of uniform laser irradiation on a target with a rippled surface, and an asymptotic
growth rate of the ablation surface ripple in the case of nonuniform laser irradiation on a smooth target. In both
cases, it can be shown that a high intensity of laser irradiation causes the ablation surface to distort, and a short
wavelength laser inhibits its deformation. Approximate formulas expressing the temporal behaviors of the
shock front and the ablation surface are obtained in the weak shock limit. Those formulas are also applicable
to a relatively strong shock. Analytical results agree quite well with recent experimental data for the shock
front ripple and the areal mass density perturbation in the initial target roughness case. The behaviors of the
shock front ripple and the ablation surface deformation are also investigated in the case where the nonunifor-
mity of the laser irradiation oscillates with time. It can be seen that the deformation of the ablation surface is
inhibited for a high oscillation frequency of the laser nonuniformity.@S1063-651X~98!06009-7#

PACS number~s!: 52.35.Tc, 52.35.Py, 52.50.Jm
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I. INTRODUCTION

To achieve ignition and high gain in inertial confineme
fusion ~ICF! @1,2#, a spherical pellet must implode efficient
and symmetrically. A laser implosion process can be divid
into three phases: start-up, acceleration, and stagna
phases. A shock wave driven by laser ablation propag
through a shell in the start-up phase, and shell accelera
then follows. The ablation surface and the interface betw
a hot core and surrounding cold main fuel are Raylei
Taylor ~RT! unstable@3# in the acceleration and stagnatio
phases, respectively. Hydrodynamic perturbation growth
the start-up phase seeds the RT instability in the subseq
acceleration and stagnation phases. The study of the hy
dynamic perturbation growth in the shock compressed ph
is thus essential for a better understanding of the RT in
bility, that is important not only in ICF but also in supernov
explosions@4#.

When ablation pressure is applied on a target with
rippled surface, a rippled shock wave is launched in acc
dance with the target surface. It is known that when a sh
front is rippled, the phase of the ripple oscillates as the sh
propagates. This is caused by lateral fluid motion behind
rippled shock front. Also, when a smooth target is nonu
formly irradiated by a laser beam, a rippled shock is driv
by perturbed ablation pressure. The oscillation of the ripp
shock generate hydrodynamic perturbations, and determ
the initial conditions for the RT instability after shock bre
kout @5–8#.

*Present address: National Institute for Fusion Science, 32
Oroshi-cho, Toki, Gitu 509-5292, Japan. Electronic addre
ishizaki@nifs.ac.jp
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Hydrodynamic perturbations generated at the ripp
shock front propagate through the shock compressed reg
and induce deformation of the ablation surface. On the ot
hand, perturbed ablation pressure drives hydrodynamic
turbations in the shock compressed region, and affects
shock front ripple because the flow behind the shock is s
sonic. The shock front ripple and the deformation of t
ablation surface thus interact with each other through
sound wave and an entropy wave in the shock compres
region. It was shown in Ref.@9# that the temporal evolution
of the rippled shock front and the deformation of the ablat
surface are obtained by solving a linear wave equation in
shock compressed region with suitable boundary conditi
that describe the ripple of the shock front and the deform
tion of the ablation surface. In this paper, a mathemat
derivation of model equations is represented in detail, w
their analytical solutions for various cases.

We consider a rippled shock driven by nonuniform las
ablation that is induced by an initial surface roughness o
target or by nonuniform laser irradiation on a smooth targ
In the linear theory, the surface roughness and nonunifo
irradiation are treated separately with different bound
conditions. As a result, analytical solutions of the mod
equation will be explicitly shown, and approximate formul
will be obtained in the weak shock limit. We show a goo
agreement between those formulas and the exact solu
not only for a weak shock but also for a relatively stro
shock. Some of the solutions are compared with recent
perimental results@5#, and good agreements between the
are obtained as shown in Ref.@9#.

It should be mentioned that since the model is based
linear theory and the assumption of a stationary laser a
tion as the zeroth order hydrodynamics, the theory may
difficult to apply directly to imprint experiments@10–14#. In
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those experiments, a significant imprint may be created
nonuniform laser irradiation before the stationary laser ab
tion takes place. Despite this fact, analytical solutions
useful to understand the underlying physics and the dep
dence on target and laser parameters.

Our model uses the variable transformation introduced
Zaidel @15# to solve the linear wave equation in the sho
compressed region with boundary conditions such as
Rankine-Hugoniot~RH! jump condition at the shock fron
@15–18# and the Chapman-Jouguet~CJ! deflagration jump
condition at the laser ablation surface@19#. The RH jump
condition gives relations of physical variables across
shock front, while the CJ deflagration jump condition rela
physical variables at the ablation surface with those at
sonic point. It is thus assumed implicitly that a wavelength
target surface roughness or laser nonuniformity is very lo
compared with the width of the ablation layer. This assum
tion may be suitable for the case of laser irradiation with
weak intensity in which the width of the ablation layer
short, because the width is proportional to the mean free p
determined by electron temperature at the sonic point@19#. If
the wavelength of the perturbation is comparable to
shorter than the width, the thermal smoothing in the ablat
layer should be taken into account. It should also be m
tioned that we choose ‘‘plausible’’ boundary conditions
the sonic point because the flow expands supersonically
region beyond the sonic point, and neither sound nor entr
waves in this region can cross the sonic point and affect
shock compressed region.

In spite of these assumptions, we can derive many sig
cant features of the problems from the simple model. I
tially, the amplitude of the shock surface ripple decays r
idly compared with that driven by a rippled rigid pisto
because of the mass ablation across the ablation surface
amplitude of the ablation surface ripple approaches a fi
value in the case of the target surface roughness. It shou
noted that the growth of the ablation surface ripple is diff
ent from the Richtmyer-Meshkov~RM! instability, because
in the RM instability there is a finite growth rate and n
asymptotic amplitude@17,20,21#. On the other hand, in the
case of nonuniform laser irradiation the growth rate of
ablation surface ripple reaches an asymptotic value. Th
fore, it may be meaningless to express an amount of la
imprint by an equivalent initial surface roughness@22#, be-
cause the ablation surface ripple increases with time.

A weak intensity laser can be used as a prepulse in
start-up phase in order to prevent an entropy increase. H
ever, a laser with a relatively strong intensity~for example, a
‘‘picket fence’’ pulse laser@23#! is also used in order to
promote the ablative stabilization in the acceleration phas
is thus important to investigate the laser intensity dep
dence of hydrodynamic perturbations. In addition, it is a
interesting to estimate the laser wavelength dependence.
result, it will be shown that laser irradiation at a high inte
sity causes the ablation surface to distort, and laser irra
tion at a short wavelength inhibits its deformation.

A partially coherent light@24,25# can be used as a lase
beam, so that the nonuniformity of the laser irradiation
smoothed out. In order to estimate target perturbati
caused by the time varying nonuniformity of the laser ir
diation, it may be important to study the case when the n
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uniformity of the laser irradiation oscillates with time. Th
behavior of the shock front ripple and the ablation surfa
deformation is investigated in such a case. It can be seen
the deformation of the ablation surface is inhibited for a hi
oscillation frequency.

In Sec. II A, the zeroth order profile of a stationary sho
wave driven by a steady laser ablation is examined. T
profile is determined by applying the RH jump condition
the shock front and the CJ deflagration jump condition at
ablation surface. In Sec. II B, we describe an analysis
perturbed quantities. The perturbation analysis solves a w
equation for pressure perturbation in the shock compres
region. In Sec. II C, we explain the boundary conditions
the shock front and at the ablation surface to solve the w
equation. In Sec. III, we analyze the temporal evolution
the shock front ripple and the ablation surface deformat
by using the pressure perturbation in the case when the l
is uniformly irradiated on a target with a rippled surface.
Sec. IV, we carry out an analysis similar to that in Sec. III
the case when the laser is nonuniformly irradiated on
smooth target. The cases of constant and oscillating la
irradiation with time are discussed in Secs. IV A and IV
respectively. A summary is given in Sec. V.

II. ANALYTICAL MODEL

Laser ablation drives a shock wave forward. In the ca
when an initial surface roughness of a target is presen
rippled shock wave is launched in accordance with the ta
surface roughness. The rippled shock front oscillates as
shock propagates. Figure 1 shows a schematic of ripp
shock fronts~solid lines! driven by nonuniform laser ablation
induced by the initial surface roughness of a target at suc
sive times oft1,t2,t3,t4 . From experience based on ge
metrical optics, we introduce ‘‘rays’’ defined as orthogon
trajectories of successive rippled shock fronts. The rays
shown as dashed lines. Initially, the shock driven by
ablation propagates normally to the ablation surface. One
tube becomes narrower and another ray tube beco
broader as the shock propagates, and the difference of th
tube widths reaches a maximum at the timet5t1 . At this
time the density perturbation behind the shock front reac

FIG. 1. Illustration of rippled shock propagation driven by no
uniform laser ablation induced by the initial surface roughness o
target. Solid and dashed lines show shock fronts at different tim
and rays, respectively.t1 , t2 , t3 , andt4 correspond to times when
the amplitude of the shock front ripple become zero, maxim
~reversed!, zero, and maximum, respectively (t1,t2,t3,t4).
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a maximum because the density is proportional to the inve
of the ray tube width. The transverse velocity perturbation
zero att5t1 because the tangent of the ray trajectory cor
sponds to the direction of the fluid velocity behind the sho
front. Since the pressure reaches a maximum in the narr
est tube and a minimum in the broadest tube, the pres
perturbation has its maximum value at the timet5t1 . The
pressure perturbation generates the transverse flow. Th
fore, the phase of the fluid motion is reversed, and at the t
t5t2 the ray tube widths become the same~i.e., the density
and pressure perturbations become zero! and the transverse
velocity perturbation reaches its maximum value. These p
cesses repeat att5t3 and t5t4 . The shock front ripple thus
oscillates with the propagation. The rippled shock propa
tion results in a hydrodynamic perturbation behind the sho
and a deformation of the ablation surface.

In this section, we develop an analytical model in order
investigate a rippled shock wave and a nonuniform laser
lation caused by the initial surface roughness of a targe
nonuniform laser irradiation on a smooth target. We w
show that hydrodynamic perturbations caused by the ripp
shock propagation can be obtained by solving a sound w
equation in the shock compressed region, with suita
boundary conditions at the shock front and the ablation s
face.

A. Zeroth order profile

At first, we briefly sketch the zeroth order profile of
stationary shock wave driven by a steady laser ablation.
energy increase in the ablation layer due to electron ther
conduction is thought to be due to combustion in a chem
reaction wave, and thus the ablation layer is characterize
the deflagration wave. The ablation acts as a piston
drives a shock wave forward. Isothermal expansion follo
the deflagration, since the flow is generally nonstation
behind the Chapman-Jouguet point where the flow velo
equals the local sound speed in a reference frame mo
with the ablation surface. The domain can be then separ
into four regions by the shock front, ablation front, and so
point, as shown in Fig. 2. We label these regions 0, 1, A,
2 from right to left. Region 0 is a uniform state ahead of t
shock; region 1 is a shock compressed region; region A is
ablation layer between the ablation front and the sonic po
and region 2, beyond the sonic point, is an isothermal
efaction region where the flow is self-similar and superson

FIG. 2. Schematic diagram of shock propagation driven by la
ablation;~a! x-t diagram;~b! density profile at a certain time. s, a
and so denote the shock front, ablation front, and sonic point,
spectively. 0, 1, A, and 2 denote the unperturbed region, sh
compressed region, deflagration region, and isothermal rarefa
region, respectively. The dashed line in~a! shows fluid flow.
se
s
-
k
w-
re

re-
e

o-

-
k,

o
b-
or
l
d

ve
le
r-

e
al
al
by
d

s
y
y
ng
ed
c
d

n
t;
r-
.

The electron heat conduction should be taken into accoun
obtain the structure of the ablation layer. However, physi
variables of the whole regions are simply obtained by me
of the jump conditions at the shock front and through t
ablation layer.

We can write the mass, momentum, and energy conse
tion equations across the shock front~between regions 0 and
1! as

r0us5r1~us2vx1!, ~2.1a!

p01r0us
25p11r1~us2vx1!2, ~2.1b!

h01 1
2 us

25h11 1
2 ~us2vx1!2, ~2.1c!

and across the ablation layer~between regions 1 and 2! as

r1~ua2vx1!5r2~ua2vx2!, ~2.2a!

p11r1~ua2vx1!25p21r2~ua2vx2!2, ~2.2b!

h11
1

2
~ua2vx1!21

I

r1~ua2vx1!
5h21

1

2
~ua2vx2!2,

~2.2c!

whereus , ua , andvx are the shock front, ablation surfac
velocities, and fluid velocity in a laboratory frame, an
p, r, andh are the pressure, density, and enthalpy, resp
tively. I is the absorbed laser intensity.n5(g11)/(g21),
andg is the isentropic exponent. The subscripts 0, 1, an
denote the values of the regions 0, 1, and the sonic po
respectively. We can expressus andus2vx1 by the pressure
p and specific volumeV(51/r) from Eqs.~2.1a! and~2.1b!
as

us

V0
5

us2vx1

V1
5Ap12p0

V02V1
. ~2.3!

Substituting Eq.~2.3! into Eq. ~2.1c!, and using the enthalpy
equation for an ideal fluidh5gpV/(g21), we obtain

~n0V02V1!p02~n1V12V0!p150. ~2.4!

The relations given by Eqs.~2.3! and~2.4! are familiar as the
RH jump conditions of a shock wave. In the same way,
obtain relations at the ablation surface from Eq.~2.2! ~see
Appendix A!:

ua2vx1

V1
5

ua2vx2

V2
5Ap12p2

V22V1
5ṁ5r1va , ~2.5!

~n1V12V2!p12~n2V22V1!p252
2I

ṁ
, ~2.6!

whereṁ is the mass ablation rate, andva is the fluid velocity
across the ablation surface, namely, the ablation veloc
The fluid velocity at the sonic point relative to the ablatio
surface is equal to the isothermal sound speed at the s
point:

ua2vx25Ap2V2. ~2.7!
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These relations are referred to as the CJ deflagration j
conditions@19#.

It is known that once the uniform state ahead of the sh
and the absorbed laser intensity are given, one can uniq
determine the zeroth order variables in each region by u
the jump conditions and the energy conservation of
whole system@19#. It is also possible to determine all zero
order variables by using the jump conditions and specify
one of the variables, such as the ablation pressure, the
ablation rate, or the density at the sonic point. In this pa
we simply assume that the density at the sonic point is
laser cutoff density@26#. The sonic point density may no
always be the cutoff density, especially for a short wa
length laser. However, this assumption is not so inaccurat
the case when a low-Z target ~e.g., CH! is irradiated by a
0.53-mm laser. For a shorter wavelength laser, we can so
the zeroth order jump conditions by using the observed
lation pressure (p1) or mass ablation rate (ṁ) instead of the
cutoff density.

p1 is approximately proportional toI 2/3 when the density
at the sonic point is the laser cutoff density~see Appendix
A!. The analytical model described in this paper is applica
even to different ablation models@27# in which the laser
intensity dependence of the ablation pressurep1(I ) is not
I 2/3, as will be discussed in Sec. IV A.

B. Perturbation analysis in shock compressed region

An initial surface roughness of a target or nonunifo
laser irradiation on a smooth target induces perturbation
pressure, volume, and velocity in regions 1, A, and 2. W
study the problem in a system of reference that moves w
the shock compressed region, in which the coordinates
defined byx85x2vx1t and t85t. In this system, the shoc
front and the ablation surface moves with velocities,us
2vx1 andua2vx1(5va), respectively. All perturbed quan
tities are assumed to depend on the transverse coord
proportional to exp(iky), with a wave numberk. We assume
that the initial surface modulation of the target is given
a0exp(iky) in the initial target roughness case, and the
sorbed laser nonuniformity asdIexp(iky) in the nonuniform
laser irradiation case, wherea0 anddI are the amplitude of a
surface roughness and the nonuniformity of the absorbed
ser intensity, respectively. Moreover, we assume a small
turbationa0!l(52p/k) or dI !I , so that the equations ca
be linearized.

We can write the linearized fluid equations applied to
region 1 as

]

]t8
dV12V1S ]

]x8
dvx11 ikdvy1D 50, ~2.8a!

]

]t8
dvx152V1

]

]x8
dp1 , ~2.8b!

]

]t8
dvy152 ikV1dp1 , ~2.8c!
p
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]

]t8
ds150, ~2.8d!

wheredp1 , dV1 , andds1 are the perturbations of the pre
sure, specific volume, and entropy in the compression reg
respectively.dvx1 anddvy1 arex and y components of the
perturbed fluid velocity, respectively. The perturbatio
dp1 , dV1 , andds1 are related through the law of thermo
dynamics and the equation of state for an ideal gas as

ds1

cv1
5

dp1

p1
1g1

dV1

V1
, ~2.9!

wherecv1 is the specific heat at constant volume in the
gion 1. From Eq.~2.8d!, we see that the entropy perturbatio
is only a function of positionx8. By using Eqs.~2.8! and
~2.9!, we obtain the homogeneous wave equation for the p
turbed pressure:

]2

]t82
dp15c1

2 ]2

]x82
dp12c1

2k2dp1 , ~2.10!

wherec1 is the sound speed in the region 1:c15Ag1p1V1.
Introducing new nondimensional independent variablesr
andu defined by

r coshu5kc1t8[ t̂ , ~2.11a!

r sinh u5kx8[ x̂, ~2.11b!

the general solution of Eq.~2.10! is written as@15,16,20#

p̂1[
dp1

p1
5(

m
~Dm

a e1mu1Dm
b e2mu!@Dm

c Jm~r !1Dm
d Nm~r !#,

~2.12!

whereJm andNm are Bessel and Neumann functions of t
orderm, respectively. The coefficientsDm

a , Dm
b , Dm

c , and
Dm

d , as well as the separation constantm, must be deter-
mined by the initial and boundary conditions. The coor
nates of both shock and ablation fronts with the new va
ables are defined asr s , us and r a , ua , respectively. The
domain of the variables are thusr>0 andua<u<us .

C. Boundary conditions

We consider the boundary conditions at the shock fr
and the ablation surface. Let us introduce the amplitude
the shock front ripple asas . The total derivative of the am
plitude with respect to time is then equal to the perturbat
of the shock velocity, i.e.,ȧs[das /dt85dus . We normalize
the amplitude by the wave numberâs5kas . By linearizing
Eqs. ~2.3! and ~2.4!, and with the assumption of no pertu
bation ahead of the shock, we obtain the relations among
perturbed quantities at the shock front:

dus

c1
5

ȧs

c1
5

dâs

d t̂
5

1

coshus

dâs

drs
5K1p̂1~r s ,us!,

~2.13a!
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v̂x1~r s ,us!5K2p̂1~r s ,us!, ~2.13b!

V̂1~r s ,us!5K3p̂1~r s ,us!, ~2.13c!

v̂y1~r s ,us!5K4âs~r s!, ~2.13d!

where V̂15dV1 /V1 , v̂x15dvx1 /c1 , and v̂y15 idvy1 /c1 ,
and the coefficients are defined as

K15
g111

4g1

1

bs
, K25

Ms
211

2g1Ms
2

1

bs
,

K352
1

g1Ms
2bs

2
, K45

vx1

c1
5

2~Ms
221!

2g1Ms
22~g121!

1

bs
.

Ms andbs are the shock Mach numbers for the fluids ahe
of and behind the shock front, respectively. That is,

Ms5us /c0

and

bs5~us2vx1!/c1

5A$~g121!Ms
212%/$2g1Ms

22~g121!%.

Substituting Eqs.~2.13b! and ~2.13d! into Eqs. ~2.8a! and
~2.8b! at the shock front (r 5r s and u5us), we obtain an-
other shock boundary condition:

K2F ] p̂1

]r
G

r 5r s

1
1

g1r s
F ] p̂1

]u
G

u5us

1K4~sinh us!âs~r s!50.

~2.14!

We use Eqs.~2.13a! and~2.14! as the boundary conditions i
order to determine the coefficients in the general solution
p̂1 given by Eq.~2.12!. Because the solution containing th
Neumann function has been dropped in order to satisfy
initial conditionp1(0,u)5finite, we can rewrite Eq.~2.12! as
n

d
th
a
id
d

f

e

p̂1~r ,u!5(
m

~Eme2m~us2u!1Fme2m~u2ua!!Jm~r !,

~2.15!

whereEm5Dm
a Dm

c emus andFm5Dm
b Dm

c e2mua are used in or-
der to defend exponential terms of Eq.~2.12! against numeri-
cal divergence. Following Zaidel@15#, let us define

A~s!5E
0

`

âs~r !e2srdr, ~2.16a!

P~s,u!5E
0

`

p̂1~r ,u!e2srdr. ~2.16b!

Using the fact that the Laplace transform ofJm(r ) is
e2mq/coshq by definings5sinhq, Eq. ~2.15! becomes

P~s,u!5(
m

~Eme2m~us2u!1Fme2m~u2ua!!
e2mq

coshq
.

~2.17!

Using Eq.~2.17! and the fact that the Laplace transform
mJm(r )/r is e2mq, we can write Eqs.~2.13a! and ~2.14! as

A~s!5
K1~coshus!P~s,us!1â0

sinh q
, ~2.18a!

K2P~s,us!sinh q2K2p̂101(
m

1

g1
~Em2Fme2m~us2ua!!

3e2mq1K4~sinh us!A~s!50, ~2.18b!

whereâ0 and p̂10 are initial values of the normalized shoc
ripple amplitude and the normalized pressure perturbatio
the shock front, respectively. That is,â05ka0 and p̂10

5 p̂1(0,us). Substituting Eq.~2.18a! into Eq.~2.18b!, we ob-
tain
(
m

~K2 sinh2q1K1K4 sinh us coshus!~Em1Fme2m~us2ua!!e2mq1(
m

1

g1
sinh q coshq~Em2Fme2m~us2ua!!e2mq

2K2p̂10sinh q coshq1K4â0 sinh us coshq50. ~2.19!
th

of
on-

ce

ion
Em and Fm are determined by the independent equatio
obtained by setting the coefficients ofe2mq equal to zero for
all m. The indexm in Eq. ~2.18! is replaced by a positive
integerm, so that terms withâ0 and p̂10 are consistent with
the other terms in Eq.~2.19!.

To close the problem we consider the boundary con
tions at the ablation surface. In our analysis, we regard
linearized CJ deflagration jump conditions as the bound
conditions at the ablation surface by assuming that the w
s

i-
e

ry
th

of the ablation layer A in Fig. 2 is very short compared wi
the wavelength of the perturbation,l(52p/k). For the per-
turbation of which wavelength is comparable to the width
the ablation layer or shorter than the width, one should c
sider the thermal smoothing effect in the ablation layer.

In the same way as the shock front ripple, we introdu
the amplitude of the ablation surface ripple asaa . The total
time derivative of the amplitude is equal to the perturbat
of the ablation surface velocity, i.e.,ȧa[daa /dt85dua . Af-
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ter the linearization of the CJ deflagration jump conditio
with complicated calculation as shown in Appendix B, w
obtain

ȧa2dvx1

va
5

p̂12 p̂21V̂12M̄ V̂2

12M̄
, ~2.20a!

ȧa2dvx2

c2
5

1

12M̄
S p̂12 p̂21M̄ V̂11

M̄ ~123M̄ !

11M̄
V̂2D ,

~2.20b!

L1p̂11L2V̂11L3p̂21L4V̂25L5Î . ~2.20c!

In the above equations, the coefficients are

L15
11M̄

M̄
2n1

22M̄

12M̄
1n2

~11M̄ !2

4M̄ ~12M̄ !
,

L252n1

1

12M̄
1n2

~11M̄ !2

4~12M̄ !
,

L352
113M̄

2M̄
1n1

1

12M̄
1n2

~11M̄ !~123M̄ !

4M̄ ~12M̄ !
,

L45
12M̄

2
1n1

M̄

12M̄
1n2

~11M̄ !~123M̄ !

4~12M̄ !
,

L55
12M̄2

2M̄
2n11n2

~11M̄ !2

4M̄
,

where Î 5dI /I and M̄5g1(va /c1)2. va /c1 represents the
ablation Mach number which is much smaller than unity
general. We definep̂25dp2 /p1 , V̂25dV2 /V1 , and v̂x2
5dvx2 /c1 , where dp2 , dV2 , and dvx2 are the perturba-
tions of the pressure, specific volume, and fluid velocity
the sonic point. Equation~2.20! gives relations between th
perturbations at the ablation front and those at the so
point.

We assume that the first-order quantities at the sonic p
satisfy the condition that the local Mach number is equa
unity @28#:

ȧa2dvx2

c2
5

1

2S dp2

p2
1

dV2

V2
D5

p̂21M̄ V̂2

11M̄
. ~2.21!

In addition, we assume

V̂250, ~2.22!

because the density of the sonic point is taken to be the l
cutoff density@26#. It is noted that we are not solving th
perturbation in region 2. Rather, we replace that physics w
Eq. ~2.21!, and replace the assumption with Eq.~2.22!. In
this way, Eqs.~2.19!–~2.22! give enough boundary cond
tions for p̂1 to be solved. This can be done because the fl
in region 2 expands supersonically, and neither sound
entropy waves in region 2 can cross the sonic point
s

t

ic

nt
o

er

h

w
or
d

affect the flow in region 1. The assumption ofdV250 may
not be a unique boundary condition. As a matter of fact,
obtain similar results, as will be explained in Sec. III, even
we choose the boundary conditiondT250 (T is the tem-
perature!. The boundary conditiondT250 corresponds to
the assumption that large electron thermal conduct
smooth out the temperature perturbation near the sonic p
because of high temperature. As discussed in detail in
pendix C, both boundary conditions ofdV250 anddT250
result in a similar relation between the pressure and den
perturbations at the ablation surface. That is, the perturba
of the ablation pressure is very small compared with tha
the density at the ablation surface. This feature of the a
tion is also found in simulations@29# without these assump
tions. Therefore, it should be possible to solve the problem
region 1 by choosing ‘‘plausible’’ boundary conditions at th
sonic point.

Eliminating p̂2 , V̂2 , andȧa2dvx2 by using Eqs.~2.20b!,
~2.20c!, ~2.21!, and ~2.22!, we obtain a relation among
p̂1 , V̂1 , and Î :

p̂15L6V̂11
2

3
Î , ~2.23!

where

L65
1

L5
F ~M̄11!~3M̄11!

6
1n1

M̄12

3
2n2

~M̄11!2

4
G .

At last, we consider the entropy perturbation in region
Figure 3 shows anx-t diagram in a system of reference th
moves with the shock compressed region. The entropy
turbation is conserved along a flow line as shown by E
~2.8d!. Then

ŝ1~x08 ,t08!5 ŝ1~x08 ,t18!, ~2.24!

whereŝ15ds1 /cv1 , andt08 , t18 , andx08 are defined in Fig. 3.
x08 is an arbitrary coordinate in the compression region, a
t08 and t18 are times when the fluid atx08 crosses the shock
front and the ablation surface, respectively. Using Eq.~2.9!
and the fact that Eqs.~2.13c! and ~2.23! represent the rela
tions betweenp̂1 and V̂1 at the shock front and ablatio
surface, respectively, we can write Eq.~2.24! as

FIG. 3. x-t diagram of shock propagation driven by laser ab
tion in a system of reference that moves with the shock compre
region. s, a, 0, 1, A, and 2 are the same as in Fig. 2. Dashed
shows fluid flow.x08 is an arbitrary coordinate in the compressio
region, andt08 and t18 are times when the fluid atx08 crosses the
shock front and the ablation surface, respectively.
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p̂1~x08 ,t18!5L7p̂1~x08 ,t08!1L8Î ~ t18!, ~2.25!

where the coefficients are

L75
L6~12K3!

L61g1
, L85

2g1

3~L61g1!
.

Transforming Eq.~2.25! from the system ofx8 and t8 to the
system ofr andu, we have

p̂1~r a ,ua!5L7p̂1~ar a ,us!1L8Î ~r a!, ~2.26!

where a5sinhua /sinhus. Substituting Eq.~2.15! into Eq.
~2.26! and expanding the Bessel function with respect tor a ,
we obtain

(
m50

`

(
l 50

`

@~Eme2m~us2ua!1Fm!2L7am12l

3~Em1Fme2m~us2ua!!#
~21! l

l ! ~m1 l !! S r a

2 D m12l

5L8Î ~r a!.

~2.27!

The expansion ofÎ with respect tor a is written as

Î ~r a!5 (
n50

`
1

n! F dnÎ

drnG
r 50

r a
n5 (

n50

`

fnr a
n , ~2.28!

where fn5@dnÎ /drn# r 50 /n!. Em and Fm are determined
from the independent equations given by setting the coe
cients of r a

n equal to zero for alln after substituting Eq.
~2.28! into Eq. ~2.27!. We have found thatEm andFm with
evenm are independent ofEm and Fm with odd m in Eq.
~2.27! as well as in Eq.~2.19!. We can obtain the local pres
sure perturbation in the shock compressed region by u
the solution given by Eq.~2.15! after the coefficients have
been determined from Eqs.~2.19! and~2.27!, and can calcu-
late all other perturbed variables.

III. HYDRODYNAMIC PERTURBATION DRIVEN
BY AN INITIAL SURFACE ROUGHNESS

OF A TARGET

We consider a rippled shock wave driven by an init
corrugated surface. Since the rippled shock wave is launc
in accordance with the target surface, initial conditions
given by

âs~0!5âa~0!5â0 , Î ~r a!50 ~fm50!, ~3.1!

and there is no initial perturbation of the pressure:

p̂1~0,u!5 p̂1050 ~ua<u<us!. ~3.2!

The separation constant must be a positive odd intege
satisfy both the initial conditions~3.1! and ~3.2! and the
boundary conditions~2.19! and ~2.27!. Equation~2.15! thus
becomes
-

g

l
ed
e

to

p̂1~r ,u!5 (
n50

`

~E2n11e2~2n11!~us2u!

1F2n11e2~2n11!~u2ua!!J2n11~r !. ~3.3!

Substituting Eq.~3.3! into Eq. ~2.13a! and integrating
with respect tor s with the initial condition Eq.~3.1!, we can
write the shock front rippleas as

âs~r s!5â01K1~coshus! (
n50

`

~E2n111F2n11e2n11!

3E
0

r s
J2n11~r !dr, ~3.4!

where en5e2n(us2ua). Note also the relation which is ob
tained from Eq.~2.19! whenq50:

(
n50

`

~E2n111F2n11e2n11!52
â0

K1 coshus
. ~3.5!

It can be seen from Eqs.~3.4! and~3.5! that âs(r s)→0 when
r s→`. Equation~3.4! can be expressed in a form

âs~r s!5 (
n50

`

G2nJ2n~r s!, ~3.6!

where the coefficientsG are

G05â0 ,

G2n52â012K1~coshus! (
k50

n21

~E2k111F2k11e2k11!.

~3.7!

The perturbed density in the compression region is not gi
by the isentropic formula because of the entropy perturba
generated at the shock front. The local density perturbatio
given by Eq.~2.9! if the entropy perturbation is obtained
Since the entropy perturbation is constant along a flow l
as shown by Eq.~2.8d!, we can regard that the entropy pe
turbation induced at the rippled shock front propagates w
the fluid. The specific volume perturbation is thus written

V̂1~r ,u!52
1

g1
p̂1~r ,u!1S K31

1

g1
D p̂1S r

sinh u

sinh us
,usD .

~3.8!

We can obtain thex component of the velocity perturbatio
by solving Eq.~2.8b! with Eq. ~2.13b! ~refer to Appendix D!:

v̂x15 (
n50

`

~Q2n11e2~2n11!~us2u!1R2n11e2~2n11!~u2ua!!

3J2n11~r !1 (
n50

`

S2n11J2n11S r
sinh u

sinh us
D , ~3.9!

where the coefficientsQ, R, andS are given by
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Q2n1152
1

g1
S 2(

k50

n

E2k11e2~n2k!us2E2n11D ,

~3.10a!

R2n115
1

g1
S 2(

k50

n

F2k11e22~n2k!ua2F2n11D ,

~3.10b!

S2n115K2~E2n111F2n11e2n11!2~Q2n111R2n11e2n11!.

~3.10c!

In the same way, we can also obtain they component of the
velocity perturbation by solving Eq.~2.8c! with Eq. ~2.13d!
~refer to Appendix D!.

Let us consider the ablation surface deformationaa . Us-
ing Eqs.~2.20a!, ~2.20c!, ~2.22!, and~2.23!, ȧa is given by

ȧa

c1
5

dâa

d t̂
5

1

coshua

dâa

dra
5 v̂x11L9p̂11L10Î

5 (
n50

`

X2n11J2n11~r a!1L10Î , ~3.11!

where the coefficients are defined as

L95
va

2c1
S 11

M̄12

L6
D , L1052

va

c1

M̄12

3L6
,

and

X15W11S1a,

X2n115W2n111S2n11a2n11

1 (
k50

n21

~W2k111S2k11a2n112X2k11!

3
~21!n2k~2n11!!

~n2k!! ~n1k11!!
, ~3.12!

with

W2n115~Q2n111L9E2n11!e2n111~R2n111L9F2n11!,

~3.13!

where we used Eqs.~3.3! and~3.9! in order to determine the
coefficientX. Integrating Eq.~3.11! with respect tor a with
the initial condition Eq.~3.1!, we obtain

âa~r a!5â012 coshua(
n51

` F S (
k50

n21

X2k11D J2n~r a!G .

~3.14!

âa is a function of r a5kc1tA12$(ua2vx1)/c1%
2 because

the ablation surface propagates along the trajectories ox8
5(ua2vx1)t8.

Figure 4 shows the normalized perturbation amplitude
the rippled shock front~solid line! as /a0 as a function of the
normalized time,r s , and that of the ablation front~dot-
dashed line! aa /a0 as a function of the normalized time,r a .
The parameters used are a laser intensity ofI 5
f

431013 W/cm2, a laser wavelength oflL50.53 m m, a
mass density ofr051.06 g/cm3 ~CH target!, a pressure of
p050.703 Mbar~equivalent toT051 eV), and isentropic
exponents ofg053, g153, and g25 5

3 . Once a rippled
shock is launched, a pressure perturbation is induced by
lateral fluid motion behind the shock front. The pressure p
turbation causes the ripple of the shock front to be rever
and subsequently to oscillate, while the pressure perturba
increases the deformation of the ablation front mono
nously. The amplitude of the shock ripple decays as
shock propagates. Since the pressure perturbation at the
lation surface also decays with time, the deformation of
ablation surface approaches a finite value as shown in Fig
It takes a longer time for an ablation surface deformation
reach an asymptotic value as compared with an oscilla
period of a rippled shock. It should also be noted that
increase of the ablation surface deformation is different fr
the RM instability, because in the RM instability there is
finite growth rate,ȧaÞ0 and thus no asymptotic amplitud
@17,20,21#. Circles and squares show the shock front ripp
and the ablation surface deformation, respectively, for
case when we choosedT250 instead ofdV250 as the
boundary condition at the sonic point. They coincide w
the results ofdV250.

We compare a rippled shock wave driven by laser ab
tion with that driven by a rippled rigid piston~dotted line!
@16,18# in Fig. 4. As clearly seen in Fig. 4, the amplitude
the shock surface ripple driven by the ablation decays rap
compared with that driven by the rigid piston. That diffe
ence can be understood from Fig. 5. Figures 5~a! and 5~b!
illustrate rippled shock fronts~s! and ablation surfaces~a!
immediately after the shock is driven and later, respective
The lateral fluid motion behind the rippled shock front
shown by arrows in Fig. 5~a!. The fluid centered by the lat
eral motion flows out to both the shock and ablation fron
as shown by arrows in Fig. 5~b!. The fluid motion to the
shock front causes the shock front ripple to decrease, and
phase of the ripple to be subsequently reversed. On the o
hand, the fluid motion to the ablation front causes the ab
tion surface deformation to grow. Moreover, there is ma
flow across the ablation surface that promotes fluid motion

FIG. 4. Normalized amplitude of the shock front rippleas /a0 as
a function of normalized time,r s ; and the normalized amplitude o
the ablation surface deformationaa /a0 as a function of normalized
time, r a . Solid and dot-dashed lines showas /a0 and aa /a0 , re-
spectively. Circles and squares show the shock front ripple
ablation surface deformation, respectively, whendT250 instead of
dV250. The dotted line showsas /a0 driven by a rippled piston.
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the ablation surface. In the case of the rippled piston, ther
neither piston surface deformation nor mass flow across
surface. Therefore, in the case of the ablation, the pres
perturbation behind the shock decays faster and the sh
front ripple also decays rapidly compared with the case
the rigid piston. However, it should be noted that in bo
cases the amplitude of the rippled shock surface dec
asymptotically in proportion to the reciprocal of the squa
root of time,t21/2.

In a weak shock limit, in the expression ofas given by
Eqs. ~3.6! and ~3.7!, the first and second terms includin
E1 and F1 are dominant. Using the fact o
L7}L6}1/L5}M̄}(va /c1)2!1, from Eqs.~2.19! and~2.27!
E1 andF1 are written as

E1.2
2g1K4â0 sinh us

~g1K211!2~g1K221!e1
2

, ~3.15a!

F1.
2g1K4â0 sinh use1

~g1K211!2~g1K221!e1
2

. ~3.15b!

In addition, usingua!1 ~equivalent tova /c1!1), we obtain

as~ t !

a0
.J0~r s!1

2Ms
212

3Ms
211

J2~r s!

3@r s5kc1tA12~us2vx1!2/c1
2#. ~3.16!

We show the comparison between this approximate form
~symbols! and the exact solution~lines! in Fig. 6. Squares
and the dotted line and circles and the solid line represen
shock front behaviors withI 5131012 W/cm2 (Ms51.15)
and I 5431013 W/cm2 (Ms53.43), respectively. The for
mula given by Eq.~3.16! agrees quite well with the exac
solution not only for a small Mach number, but also for
relatively large Mach number. The shock front ripple is r
versed faster for a larger shock Mach number, as show
Fig. 6. Since the lateral flow behind the rippled shock fron
larger in the case of the stronger shock, the flow causes
shock front ripple to decrease faster~see Fig. 5!. The shock
front ripple thus decreases and is reversed more quickly
the weak shock limit, the surface ripple of the shock wa
driven by a rippled piston is approximately given by@15#

FIG. 5. Illustrations of rippled shock front and ablation surfa
~a! immediately after the shock is driven by uniform laser irrad
tion on a target with a rippled surface.~b! A little later. s and a are
the same as in Fig. 2. Black arrows show the fluid flow, and wh
arrows show the direction of shock propagation.
is
e
re
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e

as~r s!

a0
.J0~r s!12

~2bs
221!Ms

211

~2bs
211!Ms

211
J2~r s!

12F12
4Ms

2

~2bs
211!Ms

211

3
~bs

2Ms
212!~113bs

2!1Ms
2bs

2~31bs
2!

~Ms
211!~113bs

2!12Ms
2bs

2~31bs
2!

GJ4~r s!.

~3.17!

It should be noted that shocks driven by both ablation a
piston have the same behavior for a very weak shockMs
.1 ~equivalent tobs.1), as shown by Eqs.~3.16! and
~3.17!. Since in that limit the shocks propagate appro
mately with a sound speed in a reference system that mo
with the shock compressed region, the information of
ablation surface deformation and mass flow across the a
tion surface can no longer reach the shock front. Theref
the shock front ripples behave the same way for both case
the weak shock limit.

On the other hand, the calculation ofaa is not as straight-
forward as that ofas . It seems reasonable that in the we
shock limit the coefficientX expressed by Eq.~3.12! is ap-
proximated as

X2n11.X3e22~n21!ua ~n>1!. ~3.18!

Therefore, substituting Eq.~3.18! into Eq. ~3.14!, we can
write aa as

âa~r a!.â01X1@12J0~r a!#

12X3(
n51

` S 12e22~n21!ua

12e22ua
D J2n~r a!. ~3.19!

Using the fact thata!1 ~equivalent toua!1), andE1 and
F1 are more dominant thanE3 andF3 , we can obtainX1 and
X3 with the following approximate equations:

X1.W152
1

g1
~E1e12F1!, ~3.20a!

-

e

FIG. 6. Normalized amplitude of the shock front rippleas /a0 as
a function of normalized time,r s . Dotted and solid lines show
exact solutions ofas /a0 for absorbed laser intensities ofI 5
131012 and 431013 W/cm2, respectively. Squares and circles a
corresponding approximate formulas.
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X3.W3.2
2

g1
~E1e12F1!. ~3.20b!

Therefore, substituting Eq.~3.20! into Eq. ~3.19!, and using
ua!1, we can obtain

aa~ t !

a0
.11

8Ms
2~Ms

221!

~3Ms
211!$2g1Ms

22~g121!%

3F12J0~r a!14(
n51

` S 12e22~n21!va /c1

12e22va /c1
D J2n~r a!G

@r a5kc1tA12~va /c1!2.kc1t#, ~3.21!

where we usedva /c1 instead ofua in the exponential terms
In Ref. @9#, the asymptotic value ofaa is estimated by using
va /c1!1. The results of this approximate formula and t
exact solution are shown by symbols and lines in Fig.
respectively. The definitions of the symbols and lines are
same as those in Fig. 6. The formula agrees quite well w
the exact solution for a small Mach number. The formu
also agrees fairly well with the exact solution within th
short duration ofr a&25, even for a relatively large Mac
number. The deviation of the approximate formula from t
exact solution is caused by the approximation of Eq.~3.18!,
that is incorrect for a large Mach number. The ablation s
face deformation becomes larger as the shock is stronge
shown in Fig. 7. This can be understood as the lateral fl
behind the shock front promotes more deformation of
ablation surface since the flow is larger in the stronger sh
case.

Figures 8~a! and 8~b! show the laser wavelength depe
dence of the shock front ripple and the ablation surface
formation, respectively. They are calculated by using ex
solutions. We chooselL51.06 m m ~solid line!, 0.53 m m
~dashed line!, 0.35 m m ~dotted line!, and 0.25m m ~dot-
dashed line! as the wavelengths, calledv, 2v, 3v, and
4v, respectively. The absorbed laser intensity isI 5
431013 W/cm2, and the other parameters are the same
those in Fig. 4. There is little difference among the sho
front ripples, as shown in Fig. 8~a!. On the contrary, the
ablation surface deformation becomes smaller as the l
wavelength is shorter as shown in Fig. 8~b!.

FIG. 7. Normalized amplitude of the ablation surface deform
tion aa /a0 as a function of normalized time,r a . Dotted and solid
lines show exact solutions ofas /a0 for absorbed laser intensities o
I 5131012 and 431013 W/cm2, respectively. Squares and circle
are corresponding approximate formulas.
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This can be understood from the scaling laws of the
lation pressure and the mass ablation rate on the wavele
given by Eq.~A11!. Both the pressure and the mass ablat
rate become large for a short wavelength laser. Howe
sincep1}lL

22/3 and ṁ}lL
24/3, the increase of the mass ab

lation rate dominates over that of the pressure for the s
wavelength. Thus the deformation of the ablation surface
suppressed for the short wavelength laser. Since the sho
relatively strong whichever laser wavelength is used in
parameters here, we can estimate the shock front ripple
the asymptotic ablation surface deformation from Eqs.~3.16!
and ~3.21! as

as~r s!

a0
.J0~r s!1

2

3
J2~r s!, ~3.22a!

aa`

a0
.11

4

3g1
S 11

c1

va
D , ~3.22b!

whereaa` is an asymptotic value ofaa . The behavior of the
shock front does not depend on the laser wavelength. On
other hand, the ablation surface deformation depends on
ablation Mach numberva /c1 . That is, sinceva /c1 becomes
larger aslL becomes smaller, as shown by Eq.~A13!, the
ablation surface deformation becomes smaller, as shown
Eq. ~3.22b!. In physics, a largeva /c1 indicates that the ab
lation is promoted much more. Therefore, the ablation inh
its the deformation of the ablation surface for the short wa
length. The scaling laws of the ablation pressure and
mass ablation rate are obtained from the assumption tha

-

FIG. 8. ~a! Normalized amplitude of the shock front rippl
as /a0 as a function of normalized time,r s . Solid, dashed, dotted
and dot-dashed lines show shock front ripples for laser wavelen
of lL51.06, 0.53, 0.35, and 0.25mm, respectively.~b! Normal-
ized amplitude of the ablation surface deformationaa /a0 as a func-
tion of normalized time,r a . The definitions of lines are the same a
in ~a!.
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density of the sonic point is equal to the laser cutoff dens
Thus a quantitative analysis is still required. However,
qualitative results should be correct.

Figure 9 shows the asymptotic values ofaa as a function
of the shock intensity, (p12p0)/p1 . It should be noted tha
in our model the shock intensity is determined by the
sorbed laser intensity through the deflagration jump con
tions. The relation between them is shown by squares in
9 that can provide the absorbed laser intensity dependen
the asymptotic values. We see a good agreement betwee
approximate formula~triangles! given by Eq.~3.21! and the
exact solutions~closed circles! for the weak shock. The
asymptotic value of the ablation surface deformation
creases monotonously as the shock intensity increases. H
ever, the exact solutions do not increase so much for
strong shock case, equivalent to the high absorbed lase
tensity of*431013 W/cm2.

One of popular quantities accessible to experimental m
surement is an areal mass density. It is thus interestin
obtain information about its temporal evolution. The are
mass densityr l is given by the following equation in the
laboratory system:

r l ~y,t !5E
uat1aa~ t !eiky

ust1as~ t !eiky

$r11dr1~x,t !eiky%dx

1E
ust1as~ t !eiky

xt
r0dx, ~3.23!

wherext is an initial target thickness. Noting that the initi
perturbation of the areal mass density is (dr l )052r0a0 , we
can write the first-order quantitydr l of Eq. ~3.23! as

dr l ~ t !

~dr l !0
5S 12

r1

r0
Das~ t !

a0
1

r1

r0

aa~ t !

a0
2E

uat

ustdr1~x,t !

r0a0
dx.

~3.24!

Substituting Eq.~3.8! throughdr152r1V̂1 , we obtain

FIG. 9. Normalized asymptotic value of the ablation surfa
deformation aa` /a0 as a function of shock intensity, (p1

2p0)/p1 . Closed circles and triangles show the exact solution
approximate formula ofaa` /a0 , respectively. Squares show rel
tions between the absorbed laser intensity and shock intensity
.
e

-
i-
g.
of

the

-
w-
e

in-

a-
to
l

dr l ~ t !

~dr l !0
5S 12

r1

r0
Das~r s!

a0
1

r1

r0

aa~r a!

a0
2

r1

r0ka0

3F 1

g1
(
n50

`

$M2n1N2ne2n%J2n~r s!2
1

g1

3 (
n50

`

$M2ne2n1N2n%J2n~r a!22 sinhus

3S K31
1

g1
D (

n51

`

(
k50

n21

$E2k111F2k11e2k11%

3H J2n~r s!2J2nS r a

sinh ua

sinh us
D J G , ~3.25!

where the coefficientsM andN are

M050, M2n5 (
k50

n21

2~21!n2k21E2k11e$2~n2k21!11%us,

~3.26!

N050, N2n5 (
k50

n21

2~21!n2kF2k11e2$2~n2k21!11%ua.

~3.27!

We can thus evaluate the areal mass density perturbatio
substituting Eqs.~3.6! and ~3.14! into Eq. ~3.25!.

In Ref. @9#, we compared the theoretical values with t
experimental results@5#. The parameters used are the same
those in Fig. 4. Good agreement between the theory and
experiment is found in the amplitude of the shock fro
ripple and the areal mass density perturbation. It should
mentioned that two-dimensional simulations also predict
experimental results@5#.

IV. HYDRODYNAMIC PERTURBATION DRIVEN
BY NONUNIFORM LASER IRRADIATION

ON A SMOOTH TARGET

A. Constant nonuniform laser irradiation

We investigate a rippled shock driven by nonuniform
ser irradiation on a smooth target. In this subsection,
consider the constant nonuniformity of the laser absorpt
with time. Initial conditions are then given by

âs~0!5âa~0!5â050, Î ~r a!5 Î 0 , ~4.1!

whereÎ 0 is a constant value. From Eq.~2.28!, the latter equa-
tion in Eq. ~4.1! is equivalent to

f05 Î 0 , fm50 ~m>1!. ~4.2!

In the same way as in Sec. III, we obtain an initial value
the pressure perturbation by using Eqs.~2.26! and ~4.1!:

p̂105 p̂1~0,u!5
L8

12L7
Î 0 ~ua<u<us!. ~4.3!

d
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The separation constant must be a positive even intege
satisfy the initial conditions~4.1! and~4.3! and the boundary
conditions~2.19! and ~2.27!. Equation~2.15! thus becomes

p̂1~r ,u!5 (
n50

`

~E2ne22n~us2u!1F2ne22n~u2ua!!J2n~r !.

~4.4!

Using Eq.~2.13a! with Eq. ~4.1!, we can writeas as

âs~r s!5K1~coshus! (
n50

`

~E2n1F2ne2n!E
0

r s
J2n~r !dr.

~4.5!

The relation obtained from Eq.~2.19! with q50 is

(
n50

`

~E2n1F2ne2n!50. ~4.6!

It can be seen from Eqs.~4.5! and~4.6! that âs(r s)→0 when
r s→`. Equation~4.5! can be expressed in a form

âs~r s!5 (
n50

`

G2n11J2n11~r s!, ~4.7!

with

G2n1152K1~coshus!(
k50

n

~E2k1F2ke2k!. ~4.8!

We can obtain thex component of the velocity perturbatio
by solving Eq.~2.8b! with Eq. ~2.13b! in the same way as
Appendix D. Then

v̂x15 (
n50

`

~Q2ne22n~us2u!1R2ne22n~u2ua!!J2n~r !

1 (
n50

`

S2nJ2nS r
sinh u

sinh us
D , ~4.9!

where the coefficientsQ, R, andS are given by

Q2n52
1

g1
S 2(

k50

n

E2ke
2~n2k!us2E2nD , ~4.10a!

R2n5
1

g1
S 2(

k50

n

F2ke
22~n2k!ua2F2nD , ~4.10b!

S2n5K2~E2n1F2ne2n!2~Q2n1R2ne2n!. ~4.10c!

Using Eqs.~3.11!, ~4.4!, and~4.9!, the time derivative ofaa
is given by

ȧa

c1
5 v̂x11L9p̂11L10Î 5 (

n50

`

X2nJ2n~r a!1L10Î 0

~4.11!

where the coefficients are defined as
to

X05W01S0 ,

X2n5W2n1S2na2n1 (
k50

n21

~W2k1S2ka
2n2X2k!

3
~21!n2k~2n!!

~n2k!! ~n1k!!
, ~4.12!

with

W2n5~Q2n1L9E2n!e2n1~R2n1L9F2n!. ~4.13!

Integrating Eq.~4.11! with respect tor a with the initial con-
dition Eq. ~4.1!, we obtain:

âa~r a!52~coshua! (
n50

` F S (
k50

n

X2kD J2n11~r a!G
1L10Î 0r a coshua . ~4.14!

In this problem, since the nonuniformity is continuous
supplied by the laser, there is a finite asymptotic value of
growth rate of the ablation surface ripple, contrary to t
problem in Sec. III. It is thus essential to estimate the grow
rate of the ablation surface ripple given by Eq.~4.11! rather
than the deformation amplitude of the ablation surface giv
by Eq. ~4.14!. Figure 10 shows the normalized shock fro
ripple âs / Î 0 as a function ofr s and the normalized growth
rate of the ablation surface ripple (ȧa /c1)/ Î 0 as a function of
r a . The parameters used are the same as those in Fi
Since the laser intensity perturbation drives the ablation p
sure perturbation that induces the shock front ripple for
instant, the shock front ripple increase with time. On t
other hand, the lateral flow behind the shock front causes
shock front ripple to decrease, as mentioned in Sec. III~see
Fig. 5!. Therefore, the shock front ripple increases with tim
at first and decays subsequently, as shown in Fig. 10.
first maximum of the dimensionless shock front ripp
reaches a value of;0.65 atr s;2 for the parameters used
The ablation surface is distorted by the lateral flow, and
growth rate increases monotonously and approaches a fi
value, as shown in Fig. 10.

FIG. 10. Normalized amplitude of the shock front rippleâs / Î 0

as a function of normalized time,r s ; and the normalized growth

rate of the ablation surface ripple (ȧa /c1)/ Î 0 as a function of nor-
malized time,r a .
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In the weak shock limit, it seems reasonable that the fi
second, and third terms includingE0 , F0 , E2 , F2 , E4 ,
and F4 , are dominant in the expression ofas given by Eq.
~4.7!. Using the fact ofL7.0 and L8. 2

3 with L6!1,
E0 , F0 , E2 , F2 , E4 , and F4 , are approximated from
Eqs. ~2.19! and ~2.27!, with the initial conditions Eqs.~4.1!
and ~4.2!, as

E0. 1
3 Î 0 , ~4.15a!

F0. 1
3 Î 0 , ~4.15b!

E2.2
2

3
Î 0

g1K512~g1K221!e2

~g1K211!2~g1K221!e4
, ~4.15c!

F2.
2

3
Î 0

g1K5e212~g1K211!

~g1K211!2~g1K221!e4
, ~4.15d!

E4.
2g1K5~E21F2e2!2 4

3 g1K2Î 0~11e4!1 4
3 Î 0e4

~g1K211!2~g1K221!e8
,

~4.15e!

F4.
g1K5~E21F2e2!e41 4

3 g1K2Î 0~11e4!1 4
3 Î 0

~g1K211!2~g1K221!e8
,

~4.15f!

where the coefficientK5 is

K554K1K4 sinh us coshus22K25
Ms

221

g1Ms
2bs

.

In addition,ua!1 ande8!1 ~equivalent tova /c1!1), and
we obtain

as~ t !.
dI 0

kI
@Cs1J1~r s!1Cs2J3~r s!1Cs3J5~r s!#

@r s5kc1tA12~us2vx1!2/c1
2#, ~4.16!

where the coefficients are given by

Cs15
g111

3g1bsA12bs
2

, Cs25Cs1

~22bs
2!Ms

213

~21bs
2!Ms

211
,

Cs35Cs2

~2bs21!Ms
213

~2bs11!Ms
211

1Cs1

4$2bs~12bs!
2Ms

22~11bs!
2%

~11bs!
2$~2bs11!Ms

211%
.

In Ref. @9#, the shock front ripple is roughly approximate
with the assumption ofCs350. The results of Eq.~4.16! are
shown by symbols in Fig. 11. The exact solutions are sho
by lines. Squares and the dotted line and circles and the s
line represent the shock front behaviors withI 5
131012 W/cm2 (Ms51.15) and I 5431013 W/cm2 (Ms
53.43), respectively, similarly to Fig. 6. We have found th
those formulas agree quite well with the exact solutions
t,

n
lid

t
r

both the small and relatively large Mach numbers. As m
tioned before, the shock front ripple increases at first for b
Mach numbers. However, since the lateral flow behind
shock front is larger as the shock is stronger, the shock fr
ripple is reversed faster~see Fig. 5!. Therefore, the first peak
value of the shock front ripple is smaller in the strong
shock case.

We take the derivative ofȧa /c1 with respect tor a in
order to obtain an approximate formula for the growth rate
the ablation surface ripple in the weak shock limit:

d

dra
S ȧa

c1
D 5 (

n50

`

Y2n11J2n11~r a!, ~4.17!

where the coefficientY is

Y15 1
2 ~X222X0!, Y2n115 1

2 ~X2n122X2n!. ~4.18!

The coefficientY can be approximated by

Y2n11.Y5e22~n22!ua ~n>2!. ~4.19!

Therefore, substituting Eq.~4.19! into Eq. ~4.17! and inte-
grating with respect tor a , we obtain

ȧa~r a!

c1
.L10Î 01X01~Y11Y3!@12J0~r a!#22Y3J2~r a!

12Y5(
n52

` S 12e22~n22!ua

12e22ua
D J2n~r a!. ~4.20!

Using a2!1, we have

Y1.
1

2
~W222W0!.2

1

2g1
~E2e22F2!2

4ua

3g1
Î 0 ,

~4.21a!

Y3.
1

2
~W42W2!.2

1

2g1
~E2e22F2!2

1

2g1
~E4e42F4!

2
4ua

g1
Î 0 , ~4.21b!

FIG. 11. Normalized amplitude of the shock front rippleâs / Î 0

as a function of normalized time,r s . Dotted and solid lines show

exact solutions ofâs / Î 0 for absorbed laser intensities ofI 5
131012 and 431013 W/cm2, respectively. Squares and circles a
corresponding approximate formulas.
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Y5.
1

2
~W62W4!.2

1

2g1
~E4e42F4!2

1

2g1
~E6e62F6!

2
20ua

3g1
Î 0 . ~4.21c!

Since we can regardE4e42F4.E6e62F6.24Î 0 /3 from
e4!1, Eq. ~4.20! becomes

ȧa~r a!/c1

Î 0

.Ca11Ca2@12J0~r a!#2Ca3J2~r a!

1Ca4(
n52

` S 12e22~n22!va /c1

12e22va /c1
D J2n~r a!,

~4.22!

where we usedva /c1 instead ofua in the exponential terms
and the coefficients are given by

Ca15
Ms

211

3g1Ms
2bs

,

Ca25
2

3g1
F128

va

c1
22

~112bs
2!Ms

21bs
2

bs$~21bs
2!Ms

211%
G ,

Ca35
4

3g1
F126

va

c1
2

~112bs
2!Ms

21bs
2

bs$~21bs
2!Ms

211%
G ,

Ca45
8

3g1
F125

va

c1
G .

In Ref. @9#, the asymptotic value ofȧa is estimated by using
va /c1!1. Integrating Eq.~4.22! with respect tor a with the
initial condition Eq. ~4.1!, we obtain the amplitude of the
ablation surface deformation as

aa~ t !.
dI 0

kI F ~Ca11Ca2!r a22Ca2J1~r a!22~Ca21Ca3!

3J3~r a!22(
n52

` H Ca21Ca32
Ca4

12e22va /c1

3S n212
12e22~n21!va /c1

12e22va /c1
D J J2n11~r a!G

@r a5kc1tA12~va /c1!2.kc1t#. ~4.23!

Figure 12 shows the approximate formula~symbols! and the
exact solution~lines! of the growth rate of the ablation su
face ripple. The definitions of symbols and lines are the sa
as those in Fig. 11. We have good agreement between
results not only in the weak shock case but also in the r
tively strong shock case, contrary to the relation between
approximate formula and the exact solution of the ablat
surface deformation in Fig. 7. The growth rate of the ablat
surface ripple is larger in the stronger shock case becaus
the larger lateral flow behind the shock front.
e
th

a-
e

n
n
of

Figures 13~a! and 13~b! show the laser wavelength depe
dence of the shock front ripple and the growth rate
the ablation surface ripple, respectively. Solid, dash
dotted, and dot-dashed lines are the results oflL
51.06, 0.53, 0.35, and 0.25m m, respectively. Similarly
to Fig. 8, there is little differences in the shock front rippl
among the different laser wavelengths. However, the gro
rate of the ablation surface ripple becomes smaller as
laser wavelength becomes shorter. Since the shock is
tively strong in the parameters used here, the behavior
the shock front ripple become the same as shown in
~4.16!. On the other hand, sinceva /c1 is larger the shorter

FIG. 12. Normalized growth rate of the ablation surface ripp

(ȧa /c1)/ Î 0 as a function of normalized time,r a . Dotted and solid

lines show exact solutions of (ȧa /c1)/ Î 0 for absorbed laser intensi
ties of I 5131012 and 431013 W/cm2, respectively. Squares an
circles are corresponding approximate formulas.

FIG. 13. ~a! Normalized amplitude of the shock front rippl

âs / Î 0 as a function of normalized time,r s . Solid, dashed, dotted
and dot-dashed lines show shock front ripples for laser wavelen
of lL51.06, 0.53, 0.35, and 0.25mm, respectively.~b! Normal-

ized growth rate of the ablation surface ripple (ȧa /c1)/ Î 0 as a func-
tion of normalized time,r a . The definitions of lines are the same a
in ~a!.
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lL is, as mentioned in Sec. III, the growth rate of the ablat
surface ripple becomes smaller for the short wavelength
shown by Eq.~4.22!. These features are the same as thos
the case of the initial target roughness discussed in Sec

Figure 14 shows the normalized asymptotic values ofȧa
as a function of the shock intensity, (p12p0)/p1 . We have a
good agreement between the approximate values~triangles!
given by Eq.~4.22! and the exact solutions~closed circles!
for the weak shock. The asymptotic value increases mon
nously as the shock intensity increases; however, the
crease is small compared with the asymptotic value ofaa in
Fig. 9. That is, (ȧa` /c1)/ Î 0 is 5–7 for low to high shock
intensity @0,(p12p0)/p1,1#. This is mainly due to the
normalization of ȧa , i.e., ȧa is normalized by the sound
speedc1 that increases as the shock intensity increas
Squares can provide the absorbed laser intensity depend
of the asymptotic value.

We have used the CJ deflagration jump condition at
ablation surface, which leads to the intensity dependenc
the ablation pressure being given approximately byp1(I )
}I 2/3, as shown in Appendix A. This dependence gives
good approximation when the direct deposition of the la
energy is near the critical density. However, when the ene
deposition is distributed over some distance from the crit
density, a different intensity dependence of the ablation p
sure should be used. Various models give different dep
dences; for example, Ref.@27# summarizes thatp1}I z,
0.57&z&0.86 for different models. Since our theory
based on linear theory, both the amplitude of the shock fr
ripple and the growth rate of the ablation surface deform
tion are approximately proportional toz. The results shown
in Figs. 10–13 are obtained for the casez5 2

3 . The results
change accordingly for different dependences of the abla
pressure.

B. Nonuniform laser irradiation oscillating with time

We also consider a case when the nonuniformity of
absorbed laser intensity oscillates with time,

Î 5 Î 0cos~vt !, ~4.24!

where Î 0 and v are the amplitude and the oscillation fr

FIG. 14. Normalized asymptotic growth rate of the ablation s

face ripple (ȧa` /c1)/ Î 0 as a function of shock intensity, (p1

2p0)/p1 . Closed circles and triangles show exact solutions a

approximate formulas of (ȧa` /c1)/ Î 0 , respectively. Squares sho
relations between the absorbed laser intensity and shock inten
n
as
in
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quency of the nonuniformity, respectively. Since variables
the ablation surface become functions of the normalized t
r a , as mentioned above we rewriteÎ as a function ofr a :

Î 5 Î 0cos~v̂r a!, ~4.25!

where the normalized oscillation frequencyv̂ is defined by

v̂5
v

kc1
coshua . ~4.26!

Using Eq.~2.28!, the coefficientf becomes

f2n5
~21!n

~2n!!
v̂2n, f2n1150. ~4.27!

Initial conditions of the shock front ripple and the ablatio
surface deformation are

âs~0!5âa~0!5â050. ~4.28!

The initial value of the pressure perturbationp̂10 is given by
Eq. ~4.3!. Since the separation constant inp̂1 must be a posi-
tive even integer to satisfy the initial and boundary con
tions, p̂1 is given by Eq.~4.4!. We can thus determine th
coefficientsE andF by solving Eqs.~2.19! and ~2.27! with
Eqs. ~4.3! and ~4.27!, and also determine all other coeffi
cients. Using those results, the shock front ripple is
pressed by Eq.~4.5! or ~4.7!.

In the weak shock limit, it seems reasonable that the fi
second, and third terms includingE0 , F0 , E2 , F2 , E4 ,
andF4 , are dominant in Eq.~4.7! within v̂&1. These coef-
ficients are approximated from Eqs.~2.19! and ~2.27! with
Eqs.~4.3! and ~4.27! as

E0.
1

3
Î 0 , ~4.29a!

F0.
1

3
Î 0 , ~4.29b!

E2.2
2

3
Î 0

g1K512~g1K221!e2

~g1K211!2~g1K221!~122v̂2!e4

,

~4.29c!

F2.
2

3
Î 0

g1K5e212~g1K211!~122v̂2!

~g1K211!2~g1K221!e4
, ~4.29d!

-

d

ty.
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E4.
2g1K5~E21F2e2!2 4

3 g1K2Î 02 4
3 Î 0e4~g1K221!~128v̂218v̂4!

~g1K211!2~g1K221!e8
, ~4.29e!

F4.
g1K5~E21F2e2!e41 4

3 g1K2Î 0e41 4
3 Î 0~g1K211!~128v̂218v̂4!

~g1K211!2~g1K221!e8
, ~4.29f!

where we usedL7.0 andL8. 2
3 . Substituting these coefficients into Eq.~4.7! and usingua!1 ande8!1 ~equivalent to

va /c1!1), we obtain the approximate formula of the shock front ripple withinv̂&1:

as~ t !.
dI 0

kI
@Cs1J1~r s!1Cs2J3~r s!1Cs3J5~r s!# @r s5kc1tA12~us2vx1!2/c1

2#, ~4.30!

with

Cs15
g111

3g1bsA12bs
2

, Cs25Cs1

~22bs
2!Ms

21324v̂2Ms
2~12bs

2!

~21bs
2!Ms

211
,

Cs35Cs2

~2bs21!Ms
213

~2bs11!Ms
211

2Cs1

4~11bs!
228Ms

2bs~12bs!
2~128v̂218v̂4!

~11bs!
2$~2bs11!Ms

211%
.
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Figure 15 shows the oscillation frequency dependenc
the normalized shock front rippleâs / Î 0 as a function ofr s .
Symbols and lines show the results of the approximate
mulas and the exact solutions, respectively. Circles and
solid line and squares and the dotted line represent the re
for the oscillation frequenciesv̂51 and 2, respectively. The
absorbed laser intensity isI 5131012 W/cm2, the laser
wavelength islL50.53 m m, and the other parameters us
are the same as those in Fig. 4. Using Eq.~4.26! in those
parameters, the oscillation period of the perturbed laser
tensity,Tos, is written as

Tos5
2p coshua

v̂kc1

5
2p

v̂kc1A12~va /c1!2

.0.063
@l ~mm!#

v̂
ns. ~4.31!

FIG. 15. Normalized amplitude of the shock front rippleâs / Î 0

as a function of normalized time,r s . Solid and dotted lines show

exact solutions ofâs / Î 0 for normalized oscillation frequenciesv̂
51 and 2, respectively. Circles and squares are corresponding

proximate formulas ofâs / Î 0 .
of

r-
e
lts

n-

Therefore, if the nonuniform wavelength isl5100 m m, v̂
51 means that the laser nonuniformity oscillates in the
riod with Tos56.3 ns. As shown in Fig. 15, the approxima
formulas agree well with the exact solutions in spite ofv̂
*1 because of the relatively weak laser intensity. The fi
maximum value of the shock front ripple becomes smal
and its oscillation period becomes shorter as the oscilla
frequency becomes higher. This can be understood as
oscillating nonuniform laser irradiation reverses the ablat
pressure perturbation that distorts the shock front ripple
an instant. The decay of the shock front ripple becom
slower for the higher oscillation frequency because the sh
front ripple is affected by the constrained oscillation of pe
turbations at the ablation surface induced by the pertur
laser intensity. However, the shock front ripple no long
depends on the frequency in the weak shock limit, since
information of the ablation surface cannot reach the sh
front, as mentioned in Sec. III. That is clear from the fact th
Eq. ~4.30! becomes Eq.~4.16! in that limit (Ms.bs.1).

Let us consider the behavior of the ablation surface de
mation. The growth rate and the amplitude of the ablat
surface ripple are given by

ȧa

c1
5 (

n50

`

X2nJ2n~v̂r a!1L10Î 0cos~v̂r a!, ~4.32!

âa~r a!52~coshua! (
n50

` F S (
k50

n

X2kD J2n11~v̂r a!G
1L10Î 0 coshua

sin~v̂r a!

v̂
, ~4.33!

where the coefficientsX are
p-
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X05W01S0 ,

X2n5
1

v̂2nFW2n1S2na2n1 (
k50

n21

~W2k1S2ka
2n2X2kv̂

2n!

3
~21!n2k~2n!!

~n2k!! ~n1k!! G , ~4.34!

with W andS given by Eqs.~4.13! and~4.10c!, respectively.
In the weak shock limit, we can obtain the approxima

formula for the growth rate of the ablation surface ripple
follows. It is not necessary to take the derivative ofȧa /c1
with respect tor a , contrary to Sec. IV A, because it seem
reasonable that withinv̂*1 the coefficientsX are given by

X2~2k11!.X2 ~k>0!, X2~2k!.X4 ~k>1!.
~4.35!

Therefore, substituting Eq.~4.35! into Eq.~4.32! and using a
familiar formula J0(r a)12(n51

` J2n(r a)51, we obtain the
approximate formula

ȧa~r a!

c1
.

1

4
~X21X4!1S X02

1

2
X4D J0~v̂r a!

1F1

4
~X42X2!1L10Î 0Gcos~v̂r a!. ~4.36!

X0 , X2 , andX4 are given by using Eqs.~4.10!, ~4.13!, and
~4.34!:

X05W01S0.
2

3
Î 0~K21L9!, ~4.37a!

X2.
W222W0

v̂2
12~W01S0!.2

1

g1v̂2
~E2e22F2!

1
4

3
Î 0~K22L9!2

8ua

3g1v̂2
Î 0 , ~4.37b!

X4.
W422W216W0

v̂4
14

W222W0

v̂2
12~W01S0!

.
1

g1
S 2

v̂4
2

4

v̂2D ~E2e22F2!2
1

g1v̂4
~E4e42F4!

1
4

3
Î 0~K21L9!, ~4.37c!

where we used a2!1. Since we can regard
E4e42F4.24Î 0(128v̂218v̂4)/3 from e4!1, Eq. ~4.36!
becomes

ȧa~r a!/c1

Î 0

.Ca11Ca2J0~v̂r a!1Ca3cos~v̂r a!,

~4.38!

where the coefficients are given by
s

Ca15
1

3g1
FMs

211

Ms
2bs

2S 2

v̂4
2

5

v̂2D d11
d2

v̂4G ,

Ca25
2

3g1
F S 2

v̂4
2

4

v̂2D d12
d2

v̂4G ,

Ca35
1

3g1
F2S 2

v̂4
2

3

v̂2D d11
d2

v̂4G ,

with

d15
$~2bs

211!Ms
21bs

2%2v̂2$~Ms
211!~11bs

2!14Ms
2bs

2%

bs$~21bs
2!Ms

211%
,

d25128v̂218v̂4.

Integrating Eq.~4.38! with respect tor a with the initial con-
dition Eq. ~4.28!, we obtain the amplitude of the ablatio
surface deformation as

aa~ t !.
dI 0

kI FCa1r a1Ca2E
0

r a
J0~v̂r !dr

1
Ca3

v̂
sin~v̂r a!G

S r a.kc1t, v̂.
v

kc1
D . ~4.39!

Figure 16 shows the oscillation frequency dependence of
normalized growth rate of the ablation surface ripp
(ȧa /c1)/ Î 0 as a function ofr a . The results of the approxi
mate formulas and the exact solutions are shown by sym
and lines. The definitions of symbols and lines are the sa
as those in Fig. 15. The parameters used are also the s
The approximate formulas agree quite well with the ex
solutions. The growth rate of the ablation surface ripple
cillates with the same period as the laser nonuniformity,
cause the growth is directly induced by the pressure per
bation at the ablation surface. We show the constant t
Ca1 in Eq. ~4.38! that corresponds to the averaged grow

FIG. 16. Normalized growth rate of the ablation surface ripp

(ȧa /c1)/ Î 0 as a function of normalized time,r a . Solid and dotted

lines show exact solutions of (ȧa /c1)/ Î 0 , for normalized oscillation

frequenciesv̂51 and 2, respectively. Circles and squares are c

responding approximate formulas of (ȧa /c1)/ Î 0 .
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rate of the ablation surface ripple^(ȧa /c1)/ Î 0&, as a function
of v̂ in Fig. 17. That value decays asv̂ increases, as show
by Eq. ~4.38!. Since the higher oscillation frequenc
smoothes the nonuniform ablation pressure much more,
averaged growth rate of the ablation surface ripple decrea
It is not easy to obtain the exact solution for a high frequen
limit because the convergence of the summation in
~4.32!. Therefore, the approximate formula may not be ac
rate in the high frequency limit. However, it is important
estimate the growth rate in order to understand qualitativ
the behavior of the ablation surface deformation. In the h
frequency limit, there is no averaged growth rate of the
lation surface ripple for a weak shock, but a finite averag
growth rate may exist for a relatively strong shock, as sho
by Eq.~4.38!, since a fluid motion driven by laser irradiatio
for an instant remains. Appendix E shows the exact solu
and approximate formula in the case that laser nonuniform
is given by Î 5 Î 0sin(vt) instead of Eq.~4.24!.

V. CONCLUSIONS

We have developed an analytical model for linear grow
of hydrodynamic perturbations induced by nonuniform la
ablation due to initial surface roughness of a target or n
uniform laser irradiation. It is shown that a shock front ripp
and deformation of an ablation surface driven by the nonu
form laser ablation interact with each other through a so
wave and an entropy wave in the shock compressed reg
We have explicitly shown analytic solutions expressing
shock front ripple and the ablation surface deformation
solving a linear wave equation with the RH jump conditi
at the shock front, the CJ deflagration jump condition at
ablation surface, and plausible boundary conditions at
sonic point.

An amplitude of the shock front ripple oscillates and d
cays with time. The asymptotic oscillation period is (kc1)21,
and the decay rate is proportional to the reciprocal of
square root of time,t21/2. The amplitude of the ripple decay
rapidly compared with that driven by a rippled rigid pisto
because of mass ablation. In the case of nonuniform la
irradiation, the first maximum of the ripple amplitude d
pends weakly on the shock intensity; for example, the n
malized amplitudekas /(dI 0 /I ) is ;0.65 for a laser intensity
of 431013 W/cm2.

In the case of target surface roughness, deformation o

FIG. 17. Time averaged growth rate of the ablation surfa

ripple ^(ȧa /c1)/ Î 0& as a function of normalized oscillation fre

quency,v̂.
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ablation surface increases slowly compared with the osc
tion period of the shock front ripple, and approaches a fin
value. The growth of the deformation is thus different fro
the RM instability. On the other hand, in the case of const
nonuniform laser irradiation the growth rate of the ablati
surface approaches a finite value. We obtain scaling laws
the asymptotic amplitude and growth rate with respect
laser intensity and laser wavelength. In both cases, i
shown that laser irradiation with high intensity~up to
;431013 W/cm2) causes the ablation surface to disto
while laser irradiation with short wavelength inhibits its d
formation because of the mass ablation effect.

The behaviors of the shock front ripple and the ablat
surface deformation are also investigated in the case w
the nonuniformity of the laser irradiation oscillates wi
time. It is shown that the deformation of the ablation surfa
is inhibited for a high frequency ofv/(kc1)@1. We obtain
approximate formulas for temporal behaviors of the sho
front ripple and the ablation surface deformation in the we
shock limit. Those formulas agree with the exact solutio
not only for a weak shock but also for a relatively stro
shock.
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APPENDIX A: CHAPMAN-JOUGUET DEFLAGRATION
JUMP CONDITIONS

We can write the mass, momentum, and energy conse
tion equations across the ablation layer~between regions 1
and 2! as

r1v̄15r2v̄25ṁ, ~A1a!

p11r1v̄1
25p21r2v̄2

2 , ~A1b!

h11
1

2
v̄1

21
I

r1v̄1

5h21
1

2
v̄2

2 , ~A1c!

where v̄15ua2vx1 ~flow velocity across the ablation sur
face!; v̄25ua2vx2 ~flow velocity across the sonic point!; I

is the absorbed laser energy;ṁ is the mass ablation rate; an
h is the enthalpy,h5gp/@(g21)r#. Eliminating v̄2 from
Eqs.~A1a! and ~A1b!, we obtain

v̄1
25

p12p2

r12r2

r2

r1
. ~A2!

By usingV instead ofr, this is expressed as

v̄1

V1
5Ap12p2

V22V1
. ~A3!
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In the same way, we obtain

v̄2

V2
5Ap12p2

V22V1
. ~A4!

Substituting Eqs.~A3! and ~A4! into Eq. ~A1c!, the energy
conservation equation becomes

g1

g121
p1V11

1

2
V1

2 p12p2

V22V1
1

I

ṁ

5
g2

g221
p2V21

1

2
V2

2 p12p2

V22V1
. ~A5!

Then

S g111

g121
V12V2D p12S g211

g221
V22V1D p252

2I

ṁ
.

~A6!

On the other hand, by using Eqs.~A1a! and ~A3!, ṁ is
written as

ṁ5r1v̄15
v̄1

V1
5Ap12p2

V22V1
. ~A7!

If there is no energy absorption, namely,I 50, Eq.~A6! cor-
responds to the Hugoniot curve in thep-V diagram.

We briefly discuss the absorbed laser intensity (I ) depen-
dence and the laser wavelength (lL) dependence of the ab
lation pressure (p1), the mass ablation rate (ṁ), and the
ablation Mach number (va /c1) @19#. Using Eq.~2.7! and the
fact of V2@V1 in general, the relation of the pressures at
ablation surface 1 and at the sonic point 2 is approxima
given by

p2 /p1. 1
2 . ~A8!

The mass ablation rate thus becomes

ṁ5Ap12p2

V22V1
.A p1

2V2
. ~A9!

Substituting Eqs.~A8! and~A9! into Eq. ~A6!, and eliminat-
ing p2 andV1 , we can writep1 as

p1.F 32I 2

~21n2!2V2
G 1/3

, ~A10!

wheren25(g211)/(g221). In addition, usingV2}lL
2 , we

obtain equations expressingI and lL dependences of th
ablation pressurep1 and the mass ablation rateṁ as

p1}S I

lL
D 2/3

, ṁ}S I

lL
4D 1/3

. ~A11!

The ablation pressure is thus larger as the laser intensi
larger and the laser wavelength is shorter. The ablation M
number is estimated in the following way. By using the ma
conservation across the ablation layer@see Eq.~2.5!#, and the
e
ly

is
ch
s

fact that the fluid velocity at the sonic point relative to th
ablation surface is equal to the isothermal sound speed@see
Eq. ~2.7!#, we obtainr1va5r2c2 . Then

va

c1
5

r2c2

r1c1
5A p2r2

g1p1r1
. ~A12!

In addition, usingp2 /p1. 1
2 and r2}1/lL

2 , and usingr1

. const in the case of a strong shock wave, we obtain

va

c1
}

1

lL
. ~A13!

That is, the ablation Mach numberva /c1 becomes larger as
lL becomes smaller. It should be noted thatva /c1!1 from
the assumption ofV2@V1 .

APPENDIX B: LINEARIZED CHAPMAN-JOUGUET
DEFLAGRATION JUMP CONDITIONS

Linearized equations of Eqs.~A1a!–~A1c! are given by
@30#

dr1v̄11r1d v̄15dr2v̄21r2d v̄2 , ~B1a!

dp11dr1v̄1
212r1v̄1d v̄15dp21dr2v̄2

212r2v̄2d v̄2 ,

~B1b!

g1

g121S dp1

r1
2

p1

r1
2

dr1D 1 v̄1d v̄11
dI

r1v̄1

2
I

~r1v̄1!2
d~r1v̄1!

5
g2

g221S dp2

r2
2

p2

r2
2

dr2D 1 v̄2d v̄2 . ~B1c!

Eliminating d v̄2 from Eqs.~B1a! and ~B1b!, we obtain

2r1~ v̄12 v̄2!d v̄15dp12dp21dr1~2v̄1v̄22 v̄1
2!2dr2v̄2

2 .

~B2!

Using v̄1 / v̄25r2 /r1 given by Eq.~A1a!, d v̄1 becomes

d v̄1

v̄1

5
dp12dp2

2~p12p2!
2

2r12r2

2r1~r12r2!
dr11

r1

2r2~r12r2!
dr2 .

~B3!

Using V instead of r and using d v̄15dua2dvx15ȧa
2dvx1 , Eq. ~B3! is

d v̄1

v̄1

5
ȧa2dvx1

ua2vx1
5

dp12dp2

2~p12p2!
1

2V22V1

2~V22V1!

dV1

V1

2
dV2

2~V22V1!
. ~B4!

In the same way,d v̄2 is given by
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d v̄2

v̄2

5
ȧa2dvx2

ua2vx2
5

dp12dp2

2~p12p2!
2

dV1

2~V12V2!

1
2V12V2

2~V12V2!

dV2

V2
. ~B5!

On the other hand, Eq.~B1c! is written by usingV instead
of r as

g1

g121
~dp1V11p1dV1!1 v̄1

2 d v̄1

v̄1

1
dI

I

I

ṁ
2

I

ṁ

dṁ

ṁ

5
g2

g221
~dp2V21p2dV2!1 v̄2

2 d v̄2

v̄2

, ~B6!

wheredṁ is given by linearizing Eq.~A7!:

dṁ

ṁ
5

dp12dp2

2~p12p2!
2

dV22dV1

2~V22V1!
. ~B7!

Substituting Eqs.~B4!, ~B5!, and ~B7! into Eq. ~B6!, we
obtain

L1

dp1

p1
1L2

dV1

V1
1L3

dp2

p1
1L4

dV2

V1
5L5

dI

I
. ~B8!

The coefficients are

L15S 12n2

V2

V1
D p2

p1
1

I

ṁ

3p122p2

p12p2
, ~B9a!

L252S 11n2

p2

p1
DV2

V1
1

I

ṁ

2V22V1

V22V1
, ~B9b!

L352S 12n2

V2

V1
D2

I

ṁ

p1

p12p2
, ~B9c!

L45S 11n2

p2

p1
D2

I

ṁ

V1

V22V1
, ~B9d!

L55
2I

ṁ
, ~B9e!

where n5(g11)/(g21). Equations~B4!, ~B5!, and ~B8!
correspond to the linearized equations~A3!, ~A4!, and~A6!,
respectively.

Next, let us show that the coefficients in Eqs.~B4!, ~B5!,
and ~B8! are expressed by only a new variableM̄
5g1(va /c1)2, whereva is the ablation velocityva5 v̄1 . By
using the mass conservation between the ablation sur
and the sonic point@Eq. ~A1a!#, and using the fact that th
fluid velocity at the sonic point relative to the ablation su
face is equal to the isothermal sound speed, we ob
r1v̄15r2v̄25r2c2 . Then

M̄5g1S v̄1

c1
D 2

5g1S r2c2

r1c1
D 2

5
p2V1

p1V2
. ~B10!
ce

in

On the other hand, usingv̄25c25Ap2V2 and Eq.~A4!, an-
other relation is obtained:

v̄25Ap2V25V2Ap12p2

V22V1
. ~B11!

Then

V1

V2
522

p1

p2
. ~B12!

Therefore, using Eqs.~B10! and ~B12!, the following rela-
tions are shown:

p2

p1
5

11M̄

2
, ~B13a!

V2

V1
5

11M̄

2M̄
. ~B13b!

We can considerp2 /p1. 1
2 andM̄!1 because ofV2@V1 in

general.
Substituting Eq.~B13! into Eqs.~B4! and ~B5!, we can

write

ȧa2dvx1

va
5

p̂12 p̂21V̂12M̄ V̂2

12M̄
~B14a!

ȧa2dvx2

c2
5

1

12M̄
S p̂12 p̂21M̄ V̂11

M̄ ~123M̄ !

11M̄
V̂2D .

~B14b!

In the same way, the coefficients of Eq.~B8!, L1;L6 , are
written as

L15
11M̄

M̄
2n1

22M̄

12M̄
1n2

~11M̄ !2

4M̄ ~12M̄ !
, ~B15a!

L252n1

1

12M̄
1n2

~11M̄ !2

4~12M̄ !
, ~B15b!

L352
113M̄

2M̄
1n1

1

12M̄
1n2

~11M̄ !~123M̄ !

4M̄ ~12M̄ !
,

~B15c!

L45
12M̄

2
1n1

M̄

12M̄
1n2

~11M̄ !~123M̄ !

4~12M̄ !
,

~B15d!

L55
12M̄2

2M̄
2n11n2

~11M̄ !2

4M̄
. ~B15e!

APPENDIX C: BOUNDARY CONDITIONS
AT THE SHOCK FRONT, ABLATION SURFACE,

AND SONIC POINT

The boundary conditions introduced in Sec. II C are o
tained by linearizing the RH jump condition at the sho
front and the CJ jump condition at the ablation surfa
Therefore, the hydrodynamic motion at the boundaries is
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stricted to satisfy the jump conditions. Since no perturbat
exists ahead of the shock, the perturbed variables at
shock front change along the RH curve@dashed line in Figs.
18~a! and 18~b!#, more rigorously along the tangent of th
RH curve at the point (p1 ,V1) because of the linearization
The parameters used in Figs. 18~a! and 18~b! are a laser
intensity of I 5431013 W/cm2, a laser wavelength oflL
50.53mm, a mass density ofr051.06 g/cm3 ~CH target!, a
pressure ofp050.703 Mbar~equivalent toT051 eV), and
isentropic exponents ofg053, g153, andg25 5

3 . In Fig.
18, the square shows a uniform state ahead of the shock
the RH curve~dashed line! passes through the uniform stat

On the other hand, the perturbation at the ablation surf
propagates out through the ablation layer, although the
turbation in the isothermal expansion region does not af
the surface beyond the sonic point. Thus we have to al

FIG. 18. Normalizedp-V diagrams for shock and laser ablatio
Squares show the uniform state ahead of shock. The dashed
shows the RH curve passing through the uniform state. Dotted l
show states at the sonic point when~a! dV250 and ~b! dT250.
Solid lines are states at the ablation surface corresponding to
states~dotted lines! at the sonic point. Closed circles show the sta
at the sonic point corresponding to rhombuses on the solid line
n
he

nd

ce
r-

ct
w

the perturbations at the sonic point. The linearized CJ de
gration jump conditions of Eqs.~2.20! and ~2.21! give the
relations between the perturbations at the ablation sur
and those at the sonic point. However, they are not enoug
give a unique relation among the variables at the abla
surface and the sonic point. The additional condition
dV250 or dT250 results in the unique relations which a
shown by solid lines (dp1 ,dV1) at the ablation surface an
by dotted lines (dp2 ,dV2) at the sonic point in Figs. 18~a!
and 18~b! for the cases ofdV250 anddT250, respectively.
For example, in the case ofdV250, the perturbation of the
ablation pressure and the specific volume at the ablation
face change along the solid line in Fig. 18~a!; equivalently,
when the pressure and specific volume perturbations at
ablation surface change along the solid line, the press
perturbation at the sonic point changes along the dotted
(dV250). In Fig. 18~a!, the perturbed states at the ablatio
surface given by the rhombuses on the solid line, (V1
1dV1 ,p11dp1)5(0.5,0.9995) and (2,1.0011), correspo
to the perturbed states at the sonic point given by the clo
circles on the dotted line, (V2 ,p21dp2)5(158.5,0.5005)
and (158.5,0.5037), respectively. Figure 18~b! shows the
same as Fig. 18~a! for the case ofdT250. As clearly seen
from Figs. 18~a! and 18~b!, the relations of the pressure an
density perturbations at the ablation surface are almost
same in both cases ofdV250 anddT250. The perturbation
of the ablation pressure is very small compared with tha
the specific volume at the ablation surface. Even if a la
perturbation of the specific volume at the ablation surface
present, it results in a small pressure change at the s
point.

APPENDIX D: DERIVATION OF THE LOCAL VELOCITY
PERTURBATION IN THE SHOCK

COMPRESSED REGION

In the case of target surface roughness, we show how
solve the partial differential equation~2.8b! with the bound-
ary condition~2.13b!, wherep̂1 is given by Eq.~3.3!. Using
normalized quantities, Eq.~2.8b! is written as

] v̂x1

] t̂
52

1

g1

] p̂1

] x̂
. ~D1!

By using Eq.~2.11!, the following derivation is obtained:

ine
es

he
s
.

] p̂1

] x̂
52~sinh u!

] p̂1

]r
1

1

r
~coshu!

] p̂1

]u
52

1

2
~sinh u! (

n50

`

~E2n11e2~2n11!~us2u!1F2n11e2~2n11!~u2ua!!„J2n~r !

2J2n12~r !…1
1

2
~coshu! (

n50

`

~E2n11e2~2n11!~us2u!2F2n11e2~2n11!~u2ua!!„J2n~r !1J2n12~r !…

5
1

2
~E1e2us2F1eua!J0~r !1

1

2(
n51

`

~E2n11e2us1E2n21eus!e22n~us2u!J2n~r !

2
1

2(
n51

`

~F2n11eua1F2n21e2ua!e22n~u2ua!J2n~r !. ~D2!
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On the other hand,] v̂x1 /] t̂ is written through the relation
with Eq. ~2.11! as

] v̂x1

] t̂
5~coshu!

] v̂x1

]r
2

1

r
~sinh u!

] v̂x1

]u
. ~D3!

v̂x1 should be expressed by the following equation in or
for Eqs.~D2! and ~D3! to satisfy Eq.~D1!:

v̂x15 (
n50

`

~Q2n11e2~2n11!~us2u!

1R2n11e2~2n11!~u2ua!!J2n11~r !, ~D4!

where the coefficientsQ andR are determined by the coe
ficients E and F, as mentioned below. Since the gene
solution of v̂x1 is obtained by adding an integral constant
Eq. ~D4!, we can write

v̂x15 (
n50

`

~Q2n11e2~2n11!~us2u!

1R2n11e2~2n11!~u2ua!!J2n11~r !1 f ~ x̂!, ~D5!

where x̂5r sinhu is noted. Substituting Eq.~D5! into Eq.
~D3!, we obtain

] v̂x1

] t̂
5a

1

2
~Q1e2us1R1eua!J0~r !1

1

2(
n51

`

~Q2n11e2us

2Q2n21eus!e22n~us2u!J2n~r !1
1

2(
n51

`

~R2n11eua

2R2n21e2ua!e22n~u2ua!J2n~r !. ~D6!

Therefore, after substituting Eqs.~D2! and ~D6! into Eq.
~D1!, and setting the coefficients ofe22n(us2u)J2n(r ) and
e22n(u2ua)J2n(r ) equal to zero for alln, Q, andR are given
by the equations

Q2n1152
1

g1
S 2(

k50

n

E2k11e2~n2k!us2E2n11D ,

~D7a!

R2n115
1

g1
S 2(

k50

n

F2k11e22~n2k!ua2F2n11D . ~D7b!

Let us determine the integral constantf . Since Eq.~2.13b!
gives the relation betweenv̂x1 and p̂1 at the shock front (r
5r s andu5us), we obtain

vx1~r s ,us!5 (
n50

`

~Q2n111R2n11e2~2n11!~us2ua!!J2n11~r s!

1 f ~r s sinh us!

5K2(
n50

`

~E2n111F2n11e2~2n11!~us2ua!!. ~D8!
r

l

Noting x̂5r s sinhus5r sinhu, f is written as

f ~r sinh u!5 (
n50

`

S2n11J2n11S r
sinh u

sinh us
D , ~D9!

with

S2n115K2~E2n111F2n11e2~2n11!~us2ua!!

2~Q2n111R2n11e2~2n11!~us2ua!!. ~D10!

Therefore,v̂x1 is given by

v̂x15 (
n50

`

~Q2n11e2~2n11!~us2u!

1R2n11e2~2n11!~u2ua!!J2n11~r !

1 (
n50

`

S2n11J2n11S r
sinh u

sinh us
D . ~D11!

In the same way, they component of the velocity pertur
bation is obtained by solving Eq.~2.8c! with Eq. ~2.13d!:

v̂y15 (
n50

`

~T2ne22n~us2u!1U2ne22n~u2ua!!J2n~r !

1 (
n50

`

V2nJ2nS r
sinh u

sinh us
D , ~D12!

where the coefficients are

T050, T2n5
2

g1
(
k50

n21

E2k11e$2~n2k!21%us, ~D13a!

U050, U2n5
2

g1
(
k50

n21

F2k11e2$2~n2k!21%ua,

~D13b!

V2n5K4G2n2~T2n1U2ne2n!. ~D13c!

Next we showv̂x1 andv̂y1 in the case of laser nonuniform
irradiation described in Sec. IV A. By solving Eq.~2.8b!
with Eq. ~2.13b! wherep̂1 is given by Eq.~4.4!, v̂x1 is writ-
ten as

v̂x15 (
n50

`

~Q2ne22n~us2u!1R2ne22n~u2ua!!J2n~r !

1 (
n50

`

S2nJ2nS r
sinh u

sinh us
D , ~D14!

where the coefficientsQ, R, andS are given by

Q2n52
1

g1
S 2(

k50

n

E2ke
2~n2k!us2E2nD , ~D15a!

R2n5
1

g1
S 2(

k50

n

F2ke
22~n2k!ua2F2nD , ~D15b!
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S2n5K2~E2n1F2ne2n!2~Q2n1R2ne2n!, ~D15c!

and by solving Eq.~2.8c! with Eq. ~2.13d!, v̂y1 is written as

v̂y15 (
n50

`

~T2n11e2~2n11!~us2u!

1U2n11e2~2n11!~u2ua!!J2n11~r !

1 (
n50

`

V2n11J2n11S r
sinh u

sinh us
D , ~D16!

where the coefficients are

T2n115
2

g1
(
k50

n

E2ke
$2~n2k!11%us, ~D17a!

U2n115
2

g1
(
k50

n

F2ke
2$2~n2k!11%ua, ~D17b!

V2n115K4G2n112~T2n111U2n11e2n11!. ~D17c!
APPENDIX E: A CASE WHERE LASER NONUNIFORMITY
IS GIVEN BY A SINE FUNCTION

We mention a case where the nonuniformity of the a
sorbed laser intensity is given by

Î 5 Î 0sin~v̂r a!. ~E1!

The coefficientsf become

f2n50, f2n115
~21!n

~2n11!!
v̂2n11. ~E2!

Therefore, the coefficientsEm and Fm with odd m solved
from Eqs. ~2.19! and ~2.27! dominate perturbed variables
The pressure perturbation is thus expressed by Eq.~3.3!. The
shock front ripple is given by Eq.~3.6!, and the growth rate
of the ablation surface ripple is given by

ȧa

c1
5 (

n50

`

X2n11J2n11~v̂r a!1L10Î 0sin~v̂r a!, ~E3!

where the coefficientsX are
X15
1

v̂
~W11S1a!,

X2n115
1

v̂2n11FW2n111S2n11a2n111 (
k50

n21

~W2k111S2k11a2n112X2k11v̂2n11!
~21!n2k~2n11!!

~n2k!! ~n1k11!! G , ~E4!

with W andS given by Eqs.~3.13! and ~3.10c!, respectively.
In the weak shock limit, it seems reasonable thatas is written within v̂&1 as

as~ t !.
dI 0

kI
@Cs1J2~r s!1Cs2J4~r s!1Cs3J6~r s!# @r s5kc1tA12~us2vx1!2/c1

2#, ~E5!

where the coefficients are

Cs15
4~g111!Ms

2v̂

3g1bs~3Ms
211!

, Cs25Cs1

2Ms
2~113bs

2!2~Ms
223!~31bs

2!1~324v̂2!~12bs
2!~3Ms

211!

2Ms
2~113bs

2!1~Ms
211!~31bs

2!
,

Cs35Cs2

~2bs21!Ms
213

~2bs11!Ms
211

2Cs1

4~11bs!
322bs~3Ms

211!~12bs!
2~5220v̂2116v̂4!

~11bs!
3$~2bs11!Ms

211%
.

In that limit, it seems reasonable that the growth rate of the ablation surface ripple is obtained by

ȧa~r a!/c1

Î 0

.Ca1E
0

v̂r a
J0~r !dr1Ca2sin~v̂r a!, ~E6!

where the coefficients are

Ca15
1

3g1
F2S 1

v̂2
24D d11

1

v̂2
d2G , Ca25

1

3g1
F S 1

v̂2
22D d12

1

v̂2
d2G ,

with
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d15
~112bs

2!Ms
211

bs~3Ms
211!

, d25
4Ms

2~Ms
221!~12bs

2!21~324v̂2!~3Ms
211!$2Ms

2bs
2~31bs

2!1~Ms
211!~113bs

2!%

bs~3Ms
211!$2Ms

2~113bs
2!1~Ms

211!~31bs
2!%

.

Integrating Eq.~E6! with respect tor a with the initial condition Eq.~4.28!, we obtain the amplitude of the ablation surfa
deformation as

aa~ t !.
dI 0

kI FCa1E
0

r a
drE

0

v̂r
dr8J0~r 8!1

Ca2

v̂
$12cos~v̂r a!%G S r a.kc1t, v̂.

v

kc1
D . ~E7!

These results are the same as those in the case when the laser nonuniformity is given by Eq.~4.25!. That is, the first
maximum value of the shock front ripple becomes smaller, and its oscillation period becomes shorter as the os
frequency becomes higher. The decay of the shock front ripple becomes slower. On the other hand, the growth ra
ablation surface ripple oscillates in the same period as the laser nonuniformity. Its averaged value decays as the o
frequency increases.
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